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Abstract— We study the capacity allocation problem in service 

overlay networks (SON)s with state-dependent connection 

routing based on revenue maximization. The dimensioning 

problem is formulated as two separate yet related optimization 

problems, namely the optimal routing problem and the optimal 

capacity allocation problem. The optimal routing problem is 

solved by employing an efficient event-dependent routing scheme 

that approximates the state dependent routing scheme. A 

call-admission-control (CAC) agent is included to allow reward 

sensitive connection GoS. This CAC mechanism provides an 

additional degree of control in the capacity allocation process and 

further improves the efficacy of the solution scheme. The optimal 

capacity allocation problem itself is solved by two different 

approaches; one employs the conventional gradient approach, the 

other uses the concept of average link shadow price that can be 

derived from  information local to the links. The two approaches 

together with the CAC agent constitute four different capacity 

allocation schemes. They are tested and compared with one 

another. A key contribution of this paper is the extension of the 

shadow price method to solve a constrained capacity allocation 

problem efficiently. The second contribution is the illustration of 

the potential performance gains by allowing an additional degree 

of control in the optimization process.  

 
Index Terms—Service Overlay Network, Capacity Allocation, 

Grade of Service, Reward Maximization, Event-Dependent 

Routing, Optimization methods.  

 

I. INTRODUCTION AND PROBLEM DESCRIPTIONS 

HE Internet primarily provides best-effort delivery for the 
data. It does not attempt to differentiate the data nor 

provide a  QoS guarantee to the data. Combining this with the 
fact that the Internet consists of a collection of independent 
autonomous systems (ASes), there is a good reason why 
offering end-to-end quality of service (QoS) guarantees in the 
pure Internet setting is difficult. Though protocols like 
DiffServ have been proposed to offer differentiated QoS in the  
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Internet, the presence of independent autonomous systems still 
makes it difficult to offer end-to-end QoS guarantees across the 
Internet, as this requires the establishment of multi-lateral 
business relationships with all the independent ASes the traffic 
would traverse. It is under that background that Service 
Overlay Networks, (SON)s, were put forward in the hope of 
addressing this difficulty. A Service Overlay Network (SON) is 
a logical network formed on the top of the physical Internet that 
spans through different autonomous systems. A SON operates 
in the same way as a Virtual Network, the SON operator owns 
the SON gateways which are placed in strategic locations. A 
SON operator leases bandwidths with QoS guarantees from the 
underlying ASes, usually in the form of Service Level 
Agreements (SLAs). These bandwidths provide logical 
connections in the overlay network. Once the bandwidths are in 
place, the SON is realized and is ready to offer end-to-end QoS 
guarantees for the value-added services it provides (i.e. VoIP, 
Video On Demand services, etc). The SON connections are 
classified by the source and the destination gateways. Users 
with access to the Internet can access the service gateways and 
use the value-added services. Figure 1 shows an example of 
SON network.   

 
In order to deploy a SON, the optimal amount of bandwidth to 
be leased for each of the logical links is a major challenge faced 
by the SON operator. From the operator point of view, the 
bandwidth allocated should provide the maximum economic 
benefit yet meet the user expectation regarding the connection 
acceptance ratio.  This ratio is also known as the Grade of 
Service requirements (GoS). So the problem confronting the 
SON operator is: Given a set of SON gateways, what are the 
optimal bandwidths to lease for the logical links if the traffic 
intensities between the SON gateway pairs are known and the 
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Fig. 1.  A SON example. 
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GoS requirements are given. This is also the question we 
address in this article. To facilitate the study, we shall consider 
the SON networks as generic networks, and the SON gateways 
as generic networking nodes. The objective is to solve the 
optimal bandwidth allocation problem of the generic networks. 
We assume all the traffic follows the exponential distribution 
for the inter-arrival time and the service time. The traffic 
demands are assumed to be homogenous(the optimization 
framework can be extended to accommodate heterogeneous 
traffic in a relative straight forward manner). They consist of 
the service specific data flows between the source-destination 
SON gateways. It is also assumed that the traffic revenue rates 
are given parameters. We also assumed that traffic among the 
source-destination node pairs are routed by state-dependent 
routing schemes such as the MDPD scheme proposed in [1]. 
We first solve the capacity allocation problem in an economic 
framework by incorporating a novel routing scheme into the 
optimization formulation as in [2] to approximate the 
state-dependent routing scheme assumed in SON. Then we 
derive a capacity allocation scheme based on the notion of link 
shadow prices in the routing layer.  Moreover, the same shadow 
prices are employed to approximate the CAC functionalities of 
a network so that CAC functionality is accounted for in the 
optimization formulations. 
 
Traditionally the literature for the network dimensioning 
problem is related to circuit switched networks such as the 
telephone network. Some of the works in the literature that are 
related to ours are [3], [4], [5], [6], [7], [8], [9], [10],  [11] and 
[12]. These studies usually assumed fixed routes [7], [8], [9], 
[12] or some simple routing strategies [3] ,[4], [6], [10], [11]. 
The problem is usually formulated as an optimization problem 
that optimizes certain objective [3], [4], [5], [7], [8], [9], [10], 
[11], [12]. Instead of employing the profit function as the 
objective to be maximized, many authors [7], [8], [10], [11] 
chose to employ the cost function as an objective to be 
minimized. While the minimum cost formulation may fit well 
some of the problems, it is not necessarily the same problem 
that the SON operators are interested in solving.  Among the 
abovementioned works, [9] and [12] are direct studies of the 
SON capacity allocation problem.  In article [9] Duan et al 
studied the capacity allocation problem without having hard 
GoS constraints. The capacity allocation problem was 
formulated and solved approximately. By assuming the 
Guassian distribution for  the link traffic, Park et al [12] refined 
the results of [9] and showed that problem formulated in [9] can 
be approximated by a separable convex optimization problem, 
Mitra et al have a series of papers on capacity allocation for the 
virtual networks [13], [14]. Their approach is closest to the one 
we are taking. They derived two approximations for the 
sensitivities of the blocking probabilities with respect to the 
capacities [15], [16]. By using these sensitivity approximations, 
Mitra was able to approximate the average link shadow price 
using Kelly’s average shadow price concept [17]. In [13], [14] a 
network design problem based on the aforementioned 
approximation of average link shadow price was formulated. 
The optimization criterion is the network reward instead of 

network profit (i.e. cost ignored). Mitra’s model differs from 
the model we study here. First we are employing an 
event-dependent routing strategy that is driven by the blocking 
of the connections in the model. Second there is the addition of 
the GoS constraints in our model. Third the objective of our 
optimization approach is the expected profit rate of the SON 
network, which is the performance metric of interest under the 
SON environment.  
 
The article is structured as follows: section 2 will be devoted to 
the discussion of the concepts of link shadow price and the path 
shadow price. An event-dependent routing algorithm for 
approximating the state-dependent routing schemes assumed 
in the SON environment is described in section 3. The 
mathematical formulations of the optimization models are 
included in section 4. Numerical and simulation results are 
presented in section 5. Section 6 concludes the study. 
 

II. LINK SHADOW PRICES AND PATH SHADOW PRICES 

The concept of link shadow price has existed in the routing 
literature since the 1980s. In [17] Kelly introduced the concept 
of implicit link cost due to accepting a connection in 
circuit-switched networks. The average link shadow price 
(ALSP) discussed in [17] is independent of the link status. It 
indicates, on an average, the loss in network revenue by 
removing one unit of bandwidth from a link. State dependent 
link shadow price (SDLSP) on the other hand, is an indication 
of the expected loss in revenue by removing one unit of 
bandwidth from a link in a given link state. ALSP can be 
derived from the SDLSP by taking the expectation of SDLSP 
with respect to the network status or by considering the left 
hand side derivative of the profit function with respect to the 
link capacity [1], [17]. The calculations of SDLSP and ALSP 
only require information local to the links. It is particularly 
convenient for decentralized processing within a network. The 
concept of link shadow price (both ALSP and SDLSP) has been 
widely employed in the routing literature as a means to measure 
the profitability of accepting a connection [1], [18]. Shadow 
price concepts are also used in network Call Admission Control 
(CAC) of various routing schemes to maximize the profit from 
the routing layer. The SDLSP indicates the expected loss by 
removing one unit of bandwidth from the link in a particular 
link state. It can act as an indication of the implicit cost in using 
the link. It can also act as an indication of the profitability of a 
link.  
 
We assume the MDPD approach for routing and CAC 
decisions in a SON. When a connection arrives at a  SON 
gateway, the CAC module of the SON checks the reward and 
calculates the so-called path net gains for the connection on all 
the candidate paths, the definition of path net gain for a path is 
given in expression (1). Where ij

w  is the reward from the 
connection, r is a candidate path for the connection, and ( )

s s
p x  

is the shadow price of the link s at state xs[1]. The equation 



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 
 

3 

describes the expected gain on the candidate path by accepting 
the connection. 

( ) (1)ij

s s

s r

w p x
∈

−∑
 

The connection will be admitted to a path with the maximum 
non-negative path net gain as given by expression (2). We 
assumed the connection will be admitted if and only if there is a 
positive net gain in the path. 
arg max{ ( )} (2)

ij

ij

s s
r R

s r

w p x
∈

∈

−∑
 

Using the statistical link independence assumption, the 
network reward process can be decomposed into separable link 
processes as in [18]. The SDLSP of a link can be derived 
conveniently using the first passage time of the M/M/c/c 
Markov chain at each of the link states. The resulting 
expression for SDLSP of homogenous traffic is a recursion as 
stated in (3), and can be efficiently calculated with a time 
complexity of O(N), where N is the link capacity. We assume 
all connection arrivals follow the Poisson distribution.  The 
Poisson connection arrival rate to the link s from OD pair  ij is 

ij

s
λ in equation (3), Ns is the capacity of the link, ij

s
w is the 

reward assigned to link s by the OD pair ij and sw  is average 
reward rate of offered traffic. 
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A candidate path for a connection can consist of multiple links. 
The information from the path shadow price distribution can be 
employed to facilitate a form of Call Admission Control for the 
routing algorithm such that only connections with positive net 
gain will be admitted by the path. To derive the shadow price 
distribution of a multi-link path, one needs to perform multiple 
convolutions with the SDLSPs. The straight forward 
convolution method would yield a time complexity of ( )n

O N  

in deriving the path shadow price distribution, 
where max{ }i

i r
N N

∈
= , Ni is the link capacity of link i, and n=|r| 

is the number of links contained in this path r. Due to the high 
time complexity, this method can not be effectively applied to 
facilitate analytical studies. We put forward two methods to 
alleviate this difficulty. The first method involves applying a 
two-moment approximation for the distribution of the path 
shadow price. Again, by assuming link independence, the 
mean and variance of the path shadow price is approximated by 
the sum of the corresponding link means and variances. The 
path mean and variance are the input parameters of a carefully 
chosen distribution to approximate the real path shadow price 
distribution. This method has the particularly simple 

complexity of O(nN) where max{ }i
i r

N N
∈

=  and n is the number 

of links in the path. A major deficiency of this approach is that 
the accuracy of approximation is not always guaranteed. In 
general it is doubtful whether it will be easy to choose a 
distribution that would match well with the convoluted shadow 
price under different network conditions. The path shadow 
price distribution is usually multi-modal with multiple peaks at 
the modes of the individual link shadow prices, and its shape 
changes according to the link loads. Moreover, since the path 
shadow price is a discrete distribution, the real path shadow 
price distribution is somewhat “peaky” as shown in the figure 3. 
Nevertheless when no other tools are available, the particular 
simple two-moment approximation is still worthwhile to give a 
try.  
 
The second method we proposed is an approximation method 
based on aggregation. Similar ideas in simplifying the 
convolution calculation by quantization and aggregation can 
also be found in [1] and [19]. The SDLSP defined in (3a) is the 
expected loss of revenue due to the removal of one bandwidth 
unit from the link. From (3a-3c) it can be seen that the SDLSP 
is always bounded by the average revenue of its offered traffic, 
as the probability of reaching the blocking state from any states 
is at most 1. As a consequence the convoluted path shadow 
price is also bounded by the sum of its links’ average revenues. 
Define by UBr(i)  the upper bound for the convoluted shadow 
price of the first i links of the route r ; instead of performing the 
convolution blindly, the shadow prices can be aggregated into 
the equal-partitioned intervals [0, delta), [delta,2*delta), 
[(k-1)*delta,UBr(i)] after performing the (i-1)th convolution. 
There are k intervals after each convolution. We define the 
error for the approximated path shadow price to be the largest 
possible deviation of the approximated shadow price value 
from its real value. Since UBr(i) is non-decreasing in i, the 
maximum possible error due to quantization for this 
convolution methodology is bounded by the following 

expression 1 ( ) ( 1)

1
( 1)

2 2

n r i r n

i

UB UB
n

k k
ε

− −

=
= ≤ −∑ . Note that 

( ) ( )r i r j
UB UB>  if i>j. The real shadow price value lies surely in 

the interval ( , )
a a

x xε ε− + , where xa is the approximated path 

shadow price value. It can be shown that if k is of O(n), this 
error can be made arbitrarily small. Even if the k is of a 
moderate magnitude, it can be observed that errors of 
distribution functions are still reasonably small. An example of 
approximated cumulative function is shown in figure 2 below, 
which compares the distribution functions for the real 
distribution and the two approximations. The time complexity 
of this convolution scheme is * * 2

1 2( )O N N n N+ , where *
1N  and 

*
2N  are the capacities of the two smallest-capacity links in the 

path. N is the capacity of the largest-capacity link, n is the 
number of hops in the path. In practice the term 2

n N  
dominates the time complexity for paths with large number of 
links. 
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The time taken to get the distribution in figure 3 is over 8 
minutes on a P4 1.7Ghz machine, yet the time taken to get the 
distribution in figure 4 is 0.2 second on the same P4 machine. 
The detailed pseudo-code for the algorithm is listed in table 1. 
This approximation allows us to employ the path shadow price 
to enforce a form of CAC in the analytical model efficiently. In 
particular we can use the cumulative distribution function of 
the path shadow price to set up a CAC “filter” that filters out 
traffic which does not offer enough reward to use the path (i.e. 
those give negative path net gain). This is also the way that the 

CAC module of state-dependent routing like the MDPD 
scheme would handle the traffic. The addition of this “filter” 
attempts to capture the characteristic of the CAC module. The 
“filter” enables the traffic GoS performance to be sensitive to 
the traffic reward, which effectively differentiates the traffic 
with respect to their reward parameters, and offers an 
additional degree of control over the resource in the capacity 
allocation process.  

 

Table 1 : A fast convolution Algorithm 

pick the two smallest-capacity links
*1 and

*2 within the path r 
for i=1 to

*1
N   

    for j=1 to 
*2

N  

        perform convolution on the links
*1 and

*2  
    end 
end 
 

for i=1 to 
* *1 2

N N×  

1.allocated arrays 
 SPK([0, delta), [delta,2*delta), [k*delta,UBr(2)]) and 

       PROBK([0, delta), [delta,2*delta), [k*delta,UBr(2)]) 
    2.aggregate the convoluted shadow price and probability into the  

corresponding locations in SPK and PROBK 
end 
 
for i=2 to n-1 

    for j=1 to * *
1 2,i rN N N∈ ≠  

       convolute SPk, PROBk with SPi and PROBi 
    end 
 

   1.allocated arrays  
SPK([0, delta), [delta,2*delta), [k*delta,UBr(2)]) and 

      PROBK([0, delta), [delta,2*delta), [k*delta,UBr(i+1)]) 
    2.aggregate the convoluted shadow price and probability into the  

corresponding locations in SPK and PROBK 
end 
 
return SPK and PROBK 

 

III. ROUTING ALGORITHM 

To incorporate the MDPD state-dependent routing algorithm 
into the optimization model is computationally infeasible, as 
that will require solving a complete Markov decision problem 
in every iteration of the capacity allocation process. In order to 
approximate the state-dependent routing algorithm assumed in 
the SON environment we propose an event-dependent routing 
scheme which is a modified version of the second routing 
scheme in [2]. In this proposed routing scheme, each of the 
potential paths for a particular traffic flow is assigned a load 
sharing coefficient [20]. These load sharing coefficients can be 
calculated according to the path net gain distributions (ie. 
proportion of the time that the path has the maximum path 
net-gain among all the potential paths for the traffic flow. This 
method will be elaborated subsequently). These load sharing 
coefficients can alternatively be treated as optimizing variables 
and calculated from an optimization model. The load sharing 
coefficients are directly proportional to the probabilities that 
the traffic will be routed through the path. In the case when 
there are n possible paths for a particular traffic, the scheme 

 
Fig. 2.  Cumulative distribution of a path’s shadow price 

 
Fig. 3.  Probability distribution of a path’s shadow price 

 
Fig. 4.  Probability distribution of a path’s shadow price (approximation) 
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will select a path among the n possible paths for the traffic flow 
to attempt. If this path is blocked, the scheme will attempt the 
remaining n-1 paths with probabilities proportional to the 
paths’ load sharing coefficients. If the new path chosen by the 
scheme also turns out to be blocked, the session request will 
attempt the remaining n-2 paths with probabilities proportional 
to their original load sharing coefficients. This process 
continues until either the traffic flow for the session is routed or 
until the set up process discovers that all n paths are blocked. 
We assume this routing scheme keeps a record of the previously 
attempted blocked paths, so that they will be avoided as the 
algorithm proceeds. Figure 5 depicts a case of such a routing 
scheme. In this scenario, path P1 is discovered blocked by a 
session attempt assigned to it. The traffic therefore overflows to 
the remaining paths P2 and P3, with probabilities directly 
proportional to their load sharing coefficients a2 and a3. 
 
The major difference between the routing scheme employed in 
this paper and the 2nd routing scheme in [2] is that in this new 
scheme, blocking can occur not only when there is insufficient 
bandwidth in the links, but may also occur when the reward 
provided by the traffic is not high enough to cover the implicit 
cost of using the path (this is dependent on whether the “filter” 
is present). Unlike routing scheme II in [2] the new routing 
scheme uses only local information and each flow records the 
blocking information itself (no exchange of data at the source 
node). So for the  same link blocking pattern in the network, 

there are  several possible sequences for a session to select the 
possible paths. The optimization formulations are therefore 
different from that of [2] and they are listed in section 4. It is 
worthwhile to mention that the optimal sets of load sharing 
coefficients give system optimality for routing inside the 
network, and provide the maximum profit to the SON operator 
under this event-dependent routing scheme. The load sharing 
coefficients may be considered as an approximation of the 
proportion of time that the paths are having the highest path net 
gain in the MDPD routing scheme. Combining this load 
sharing coefficient with the “filter” that calculates the 
probability such that the net gains are non-negative, this 
event-dependent routing scheme effectively gives a reasonable 
approximation to the MDPD routing scheme we assumed in the 
SON environment. Incorporating the filter into the routing 
scheme also provides an additional degree of freedom in 
allocating network resources in the optimization models. We 
shall see in section 5 that the incorporation of the filter is able 
to deliver further network performance gains in the 
optimization process.   

 

IV. THE MODELS 

In order to solve the capacity allocation problem, two sets of 
decision variables need to be calculated, namely the load 
sharing coefficients and then the link capacities. In other words, 
the optimal routing problem and the optimal link capacity 
problem need to be solved together as the solutions of the 
routing problem affects the capacity allocation problem and 
vice versa. We shall propose two approaches to solve the 
problem, and then we shall compare the results from these 
approaches in sections 5 and 6. 
 
The first optimization approach follows the same line as 
discussed in [2]. We shall present a brief introduction to it. In 
this approach the capacity allocation problem is formulated as a 
maximum profit optimization problem. We shall denote it by 
the notation “OPT” in the remainder of this article. We solve 
the routing problem and the dimensioning problem both using 
the optimization framework. The key idea is to solve for the 
decision variables that correspond to the set of KKT conditions 
derived. In the following description, we assume Ns, ij

r
α , Bs are 

the independent variables. Ns is the capacity of the link s. ij

rα  is 

the load sharing coefficient (or routing coefficient) that denotes 
the probability that the network would route the traffic of the 
OD pair ij (denoted by fij) through path r. 

,
ij

r k
Θ is a set containing 

all the k-permutations of the candidate paths (excluding the 

path r) for the traffic ij. 
,

ij

r k
O  is a set containing a particular 

k-permutation (also excluding path r), and 
,

( )
ij

r k
O h is an 

overloading of the expression to indicate another set that 

contains only the first h paths in the set 
,

ij

r k
O . The variables Ns 

and ij

r
α  are the decision variables to be solved. Bs is a dummy 

variable to alleviate part of the complexity involved in deriving 
the first order derivatives with respect to Ns. The optimization 
formulation, the Lagrange function and the corresponding 
KKT equations are given below in (5), (6) and (7a-c). The 
objective function in (5) has two parts. The first part, ΣCs(Ns) , 
donates the total cost rates incurred from allocating the 
capacities in the network. The second part represents the total 
expected reward rates from the individual routes. Condition  
(7a) corresponds to the set of optimal routing equations, note 
the multiplier vij is independent of the route r,  by taking into 
account the complementary slackness condition, condition (7a) 
implies all routes carrying positive flow must have the same 
first derivative path length. Condition (7c) corresponds to the 
condition that marginal reward of each of the links equals to its 
marginal cost at optimality. The key component of (7c) are  the 
y multipliers, which are derived from condition (7b).  The 
capacity allocation problem (5) is not necessarily convex nor 
uni-modal, as confirmed by our numerical study. Multiple runs 
with different initial solutions could be required to guarantee 
the quality of the solution. A simple neighborhood check 
procedure may be carried out to ensure the local optimality of 
the solution if the second order check is to be avoided. An 
interesting problem that guarantees further investigation is 

 
Fig. 5.  An illustration of the routing algorithm 
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whether there exists instances of the problem such that the 
problem is convex. 
 
In the case that the CAC “filter” is incorporated, one needs to 
modify the definition of blocking probability to take into 
account the addition blockings due to the filter, as well as the 
thinning of the offered traffic due to the presence of the filter. 
Moreover, owing to the presence of the “filter” in the routing 
layer, a penalty approach in the routing layer may be required 
to avoid the filter from overriding the GoS requirement. 
Whenever required the penalty term can be calculated in a 
sub-gradient-like approach as shown below in (4): 

( 1) ( )[ ( ) ] (4)i i i

ij ij ij ij i
p p L L s+ += + −  

where ( 1)i

ij
p +  is the penalty term for traffic pair ij at the (i+1)th 

iteration, i

ijL  is the GoS level for traffic pair ij at the ith 

iteration, ijL is the required GoS level, si is the step size at the 

ith iteration. 
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The second approach is an approximation scheme. It involves 
solving the optimal routing problem, and then deriving the 
link shadow prices from the optimal routing policy utilizing 
knowledge local to the links. Based on the shadow prices, the 
optimal link capacities can be obtained. We shall denote it by 
the notation “SP” in the remainder of this article. The optimal 
routing problem formulation is similar to that of the previous 
approach, and is listed below in (8), (9) and (10). The same 
penalty approach may also be required when the filter is 
present. The objective in (8) represents the total expected 
reward rates from the individual routes r of the OD pair ij. 
Condition  (10) corresponds to the optimal routing equation.  
By taking into account the complementary slackness 
condition, condition (10) again implies all routes carrying 
positive flow must have the same first derivative path length. 
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In this formulation the optimal routing problem is first solved, 
the traffic intensities on the links are then known. By applying 
equations (3a-3c) and taking the expectations, the average link 
shadow prices can be derived readily for different link 
capacities. Average link shadow price at a given link capacity 
can be viewed as a marginal revenue generated from the last 
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link [1]. The link cost on the other hand is the marginal cost of 
the total link cost. Maximum profit is achieved when the 
average link shadow price equals to the link cost, this can be 
viewed as a correspondence of the first order optimality 
condition (of the maximum profit formulation). To tackle the 
GoS constraints the optimal capacity problem is solved based 
on the following augmented set of equations 

( , , , )

( , , , , ) (11)

s

ijij
ss s s

ij s

A ij
ss s

B
c R w N x

N

R w N x

θ

λ α

λ α

∈

∂
= +

∂

=

∑  

Where cs is the cost of the link, λ is the average traffic intensity 

vector, α is the load sharing coefficient vector, sw  is average 
reward rate of link s as defined in (3c), Ns is the capacity of link 

s, and function Rs maps the parameters λ, α, sw  and Ns to the 
average shadow price of link s according to expressions (3a-3c). 

s
θ  is a set containing the indexes of all OD pairs that have link 

s in their routes. Since cs, λ, α, and sw  are given parameters, 
ijx is the set of multipliers which can be derived through 

sub-gradient method, the value of Ns such that equality symbol 
holds in (11) can be calculated. Assume continuous extension 
of Erlang B equation [21] is being employed, (.)A

s
R  is a strictly 

decreasing in Ns, and there is an one-to-one correspondence 
between the function’s value and Ns. Therefore (11) can be 
conveniently solved by either Newton’s method or by linear 
search methods like bisection search. In theorem 1 of the 
appendix, it was shown that the formulation based on 
expression (11) is approximately equivalent to the maximum 
profit optimization formulation discussed earlier, they are not 
exactly equivalent owing to simplifications made in 
decomposing the network reward process into the link reward 
processes. Nevertheless it provides a simple approximation to 
the derivatives in expression (7). Because of its simpler 
performance model, this approach delivers significant 
performance gain over the full gradient approach, as we shall 
see in section 5. To derive the link shadow price, the 

connection rewards on a path ij

r
w ,  are required to be divided 

into ij

s
w on the links of the path. Various link decomposition 

rules had been reported in the literature, see for example [1], 
[18]. In our investigation, it was found that equal division of 
reward (i.e. connection reward divided equally to all the links 
constituting the path) gives the best solutions among the 
division rules and therefore this rule is used throughout the 
study described in this article. The economic interpretation for 
this division scheme is, since every link offers the same amount 
of resource in carrying a connection, the link should be offered 
the same amount of reward for carrying the connection as any 
other links in the path. 
 

V. NUMERICAL AND STIMULATION RESULTS 

Numerical studies were performed on a fictitious network 
example as shown in figure 6. The outgoing traffic intensities 
are directly proportional to the population of the source node, 

and are equal to the cities’ population divided by 20 000, the 
outgoing traffic are assigned to the destination cities according 
to the ratio of their population to the total city population. The 
GoS constraints are set to 2% for all the OD pairs (i.e the 
minimum service level is 98%). The traffic matrix is listed in 
table 2 below as a reference. The unit of traffic intensity in the 
table is Erlang. The link costs are proportional to its physical 
distances and are listed in table 3. The rewards are random 
numbers listed in the table 4. For the sake of generality we do 
not force the reward matrix to be symmetric.  
 
Table 2: traffic rate matrix 

To 
From 

Vancouver Edmonton Calgary Winnipeg Montreal Toronto Total  
Outflow 

Vancouver X 3.000 3.900 2.600 4.300 11.200 25 

Edmonton 3.125 x 5.625 3.750 6.250 16.250 35 

Calgary 4.150 5.850 X 5.000 8.350 21.650 45 

Winnipeg 2.650 3.700 4.750 X 5.250 13.700 30 

Montreal 4.700 6.600 8.500 5.650 X 24.550 50 

Toronto 17.550 24.600 31.600 21.100 35.150 X 130 

Total 
Inflow 

32.175 43.750 54.375 38.100 59.300 87.350 315 

 
Table 3: link cost rates per unit bandwidth 
Link 
index 

1 2 3 4 5 6 7 8 

cost 5 4 2 7 7 11 9 3 
 
Table 4: connection reward rate matrix 

To 
From 

Vancouver Edmonton Calgary Winnipeg Montreal Toronto 

Vancouver x 12 14 24 35 20 
Edmonton 25 X 21 17 30 18 
Calgary 19 31 X 23 27 30 
Winnipeg 31 22 16 X 21 31 
Montreal 27 18 20 24 X 35 
Toronto 19 25 35 32 15 X 

 
We performed the capacity allocation for four different 
approaches; the first two approaches use the optimization 
framework discussed in section 4. We apply the traffic filter 
and combine it with the routing mechanism to one approach 
(denoted by OPT_Filter). While the other one uses the same 
routing mechanism yet it does not include the filter (denoted by 
OPT_NonFilter). The remaining two approaches are based on 
the local link information encapsulated by the link average 
shadow price, we include the filter in one (SP_Filter) and do 
not include it in another (SP_NonFilter). Network simulator 
based on the MDPD approach [1], [18] is employed to verify 
GoS requirements. Confidence interval information regarding 

 
Fig. 6. A fictitious Canada SON network 
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profit rates is also gathered from the same simulator. Table 5 
gives the capacity allocation of the four methods.  
Table 5: 

Link  
Index 

1 2 3 4 5 6 7 8 Profit rate 
(Analytic
al) 

Profit rate 
(simulation) 

OPT 
Filter 

26 53 26 94 129 68 174 91 3414.2 3422.8±101 

OPT 
NonFilter 

20 55 25 92 133 67 173 100 3416.9 3426.9±112 

SP 
Filter 

14 56 44 69 154 38 203 114 3401.6 3437.0±112 

SP 
NonFilter 

17 52 49 72 152 39 199 115 3410.5 3448.7±103 

OPT Pure  
Load 
Sharing 

17 52 67 10
7 

133 87 158 143 2975.4 3041.8±102 

For illustration, a plot of the average profit rates is shown in the 
figure 7 below. The blue dots correspond to simulation 
averages, the black vertical lines donate the 95% confidence 
intervals, and the pink dots are the average profit rates 
calculated from the analytic performance model. The time 
durations of the four capacity allocation schemes on a P4 
2.0Ghz machine are also shown in the figure 7 as blue bars, 
note the logarithmic scaled Y-axis. It can be seen that owing to 
the simpler performance model the shadow price approaches 
provide similar network profit with roughly half of the time 
durations required by the gradient approaches. 

 
For quick verification, the analytical and simulation GoS 
values of the 30 traffic pairs are also plotted in figures 8a and 8b. 
All the GoS values are below 0.02 which is the service level 
being set in this example. From the capacity assigned in table 5, 
we can see the major difference between the SP and the OPT 
approaches is that the SP approaches assign more capacities to 
links that have high traffic intensities (i.e links 5 and 7 that are 
present in 12 and 15 of all the 34 active paths respectively) and 
low link costs, yet they also tend to assign less capacities to 
links that has lower traffic intensities than what the OPT 
approaches would do (i.e. links 1, 4 and 6). This phenomenon 
is observed in other examples too. The reason is that the SP 
approaches are some hill-climbing optimization procedures 
based on local knowledge (i.e. knowledge such as link traffic 
intensities, link costs and link average rewards). Local traffic 
intensities and link costs have a profound effect on the 

hill-climbing directions. Therefore links with high traffic 

intensities and low cost would appear to the SP approaches as 
the better candidates for resource allocation. Moreover it was 
also observed that the SP approaches tend to assign larger 
capacities to links within a minimum spanning tree (MST) of 
the graph. As we have mentioned, the link costs has a 
significant impact on the improvement directions. When link 
costs are low, the SP approaches are likely to allocate the links 
with large capacities, so the augmentation of capacities usually 
occurs over the “safe edges” [20] of the network (i.e. the 
cheapest links).  The way that link capacities get augmented is 
similar to the way that the Kruskal’s algorithm behaves in 
finding a minimum spanning tree by choosing the “safe edges”. 
When the “safe edges” selected by the SP approaches join 
together, they form a MST(provided that no cycles are formed). 
This augmentation of capacities along the MST is evident in 
the example above, over links 3, 5 ,7 and 8. Whereas these four 
links form a minimum spanning tree (MST) connecting the 
nodes E, C, W, M and T. 

 

 
Fig. 8a. GoS performance of the Canada SON traffic (analytical) 

 
Fig. 7.  The Canada SON network example, the average profit rate and the time 
durations.  

 
Fig. 9  A fictitious North America SON network 

 
Fig. 8b. GoS performance of the Canada SON traffic (simulation) 
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Another sample run was performed on a larger fictitious North 
America SON example in figure 9 with 20 links, 45 OD pairs 
and 135 routes.The results are shown in the figure 10 below, 
the blue bars correspond to the running times. For the sake of 
simplicity only the profit rates and the run time results are 
shown.  Note that this example is roughly two times larger than 
the previous Canadian SON example, there are 20 links (vs 8 
links) and 135 routes (vs  60 routes). It can be seen in figure 10 
that all three approaches based on the traditional gradient 
approach (including OPT load sharing) required roughly 
quadratic (400%-600%) more running time for this network. 
Yet the SP approaches, in particular the “nonfilter” approach, 
requires only approximately linear (210%) more running time. 
The “filter” version of the SP approach suffers from the time 
penalty due to filter calculations for all the 135 routes, yet it 
requires less than 50% of the time duration required by the 
OPT approach while giving a solution in a similar quality to the 
OPT filter approach. This shows the scalability benefit by 
having a simpler performance model. 

 
It is worthwhile to mention that although the “filtered” 
approaches in these two fictitious SON examples do not offer 
performance gain in terms of network profit rates, the ability to 

differentiate traffic streams with respect to their reward, 
however, provides a valuable degree of control in the network. 
As an illustrative example, we shall inject five new traffic pairs 
VE, EW, CW, WM and WT respectively to the fictitious 
Canadian SON example. Assume the newly added traffic pairs 
having traffic connection rates of 30 units, reward rates of 2 
units and they all require a GoS of 0.3. The benefit of adding a 
filter to enable an additional degree of control becomes evident 
as shown in the figure 11. 
 
As can be seen, in order to accommodate the newly injected 
traffic, the profit rates now decrease. This is due to the fact that 
the injected connections’ rewards are so low that they can not 
even cover their fees for using the links. Note that in this 
modified case the filter approaches are able to deliver 
significant better performance in terms of average profit rate, 
the gain from having a filter is roughly 10% in both OPT and 
SP approaches. To facilitate the explanation of this 
phenomenon, we resort to a simple one-link example as shown 
in figure 12. 

 
Fig. 12. A one-link network example 
 
In this example we assume there are two classes of traffic from 
node A to node B. Index the first traffic by 1 and the second by 
2. We have the following information, λ1=6 w1=1500 
GoS1=0.02, λ2=5 w2=150 GoS2=.30, link cost for link A-B is 
250 per unit bandwidth per unit time. Using the pure 
optimization approach without the filter we get the optimal 
capacity NAB=18, and profit rate at 5106.0, GoS1= GoS2= 
0.0148. Employing the optimization approach with filter, 
however, we get the optimal capacity NAB=16, profit rate 
5380.8, GoS1= 0.019, GoS2=0.2642. The filtered approach is 
able to offer better performance by allowing an extra degree of 
control over the connection admission (even though the 
granularity of the filter may not be fine in this small example). 
Network resources can be utilized more reasonably without 
offering unnecessarily high GoS service levels. When GoS 
levels are similar and reward rates are close as in the Canadian 
and North America SON examples, the filtered approaches are 
likely to offer solutions with similar quality as the non-filter 
approaches. In particular when the GoS levels are similar, 
there is little room for the filter to enforce GoS differentiation. 
But when the network traffic are highly differentiated in nature 
with large gaps in rewards and GoS requirements, and when 
network resources are expensive, embedding a CAC agent in 
the capacity allocation process would deliver solutions with 
significantly better quality. For networks with rather uniform 
traffic rewards and GoS requirements, the non-filtered 
approaches are preferable because of the lower computational 
overhead. Otherwise the filtered approaches can be employed 
to take advantage of the added degree of control in resource 
utilization. 
 

 
Fig. 11.  The modified Canada SON network example, the average profit rate and 
the time durations.  

 
Fig. 10.  The North America SON network example, the average profit rate and the 
time durations.  
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VI. CONCLUSIONS AND FUTURE WORKS 

We have performed a comprehensive investigation of the 
Service Overlay Network dimensioning problem and provided 
some novel ingredients to solve the problem. To be specific, we 
provided a framework for the SON dimensioning problem by 
two different approaches, one based on the tradition gradient 
method, the other based on the information provided by the 
average link shadow price. We showed that these two 
approaches are approximately equivalent. Because of the 
simpler performance model, the shadow price approach 
involves significantly less computational burden than the 
traditional gradient approach. We compared the quality of the 
solution and we realized they are similar in terms of network 
profit generation. We also derived a traffic filter based on link 
shadow price distribution to further refine the control over the 
network resource utilization. It was shown that though the 
addition of the extra degree of control imposes higher 
computational overhead, this extra degree of control is valuable 
in improving the solution quality for networks with highly 
differentiated traffic. We are now investigating the way to use a 
hill-climbing approach in getting the optimal filtering 
probability with respect to the GoS constraints. This effort is 
expected to significantly reduce the computational overhead in 
incorporating the GoS differentiation mechanism in the 
optimization process. Moreover we are also looking for further 
refinement and simplification to the link shadow price 
calculation. With these future refinements, we expect our new 
methodology to be able to handle large networks yet still offer a 
reasonably fine degree of control over the resource utilization 
so as to suit a large variety of traffic classes with different 
reward rates and GoS requirements. 

 

APPENDIX 

Theorem 1: 

The shadow price capacity allocation approach is 
approximately equivalent to the optimization approach in [2].  
 
Proof:  
Hiding the routing part and abstracting it by Bij, the blocking of 
traffic for OD pair ij, the optimization formulation of [2] is 
equivalent to (T1), the notation employed here are the same as 
those mentioned earlier in this report. 
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The set of KKT conditions are shown in (T2) and (T3), where 
cs>0 is the cost of allocating one unit of capacity on link s. 
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Substituting (T3) into (T2) we have (T4): 
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Assume the reward function R is a differentiable function of the 
capacity Ns (i.e. the continuous version of Erlang equation is 
employed). The term 

s

R

N

∂

∂

 is the right hand side derivative of 

the total reward w.r.t the capacity Ns. A change in Ns may bring 
changes to the offered traffic to links other than s, which in turn 
changes reward rates on these links. It is in fact a derivative of 
the network reward w.r.t. Ns, as it measures the changes in 
network reward owning to the change of Ns. The term 

( , , , )A
ss s

R w Nλ α  calculated based on (3a-3c) and (11), is a left 

hand side approximation of the derivative of the link reward. 
When a change of capacity in link s brings negligible reward 
changes in other parts of the network, the two expressions are 
equivalent, and if this is the case the two capacity allocation 
processes are also equivalent. 
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