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ABSTRACT 

We studied a class of Service Overlay Network (SON) capacity allocation problem with Grade of Service (GoS) 
constraints. The problem can be formulated as either a Maximum Profit (MP) optimization problem or a Minimum Cost 

(MC) optimization problem. In this article we investigate the relationship between the MP and MC formulations. We use 

a set of Lagrange multipliers to investigate the general conditions for the MP formulation to be equivalent to the MC 

formulation. The set of multipliers can also be shown to act as a set of thresholds for user service charges so that the SON 
operator will be happy to provide adequate service level even if he/she is not obligated to do so. The key contribution of 
this paper is the provision of insight into the solution nature of the MP and the MC formulations under different service 

charge parameters, thereby giving guidelines to the proper formulation the network designers may consider.   
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1. INTRODUCTION 

It is non-trivial to provide end-to-end Quality of Service guarantee in the Internet, as it consists of a large 

collection of independent Autonomous Systems (ASes). To ensure end-to-end QoS guarantees, one has to 

build a multi-lateral business relationship with all the independent ASes his data transits. A higher level 
mechanism on the top of the Internet known as Service Overlay Network (SON) is thus proposed to alleviate 

this problem [12]. The SON network operates in a manner similar to a virtual network. The SON operator 

owns the SON gateways which are placed in strategic locations. To realize the SON network, the SON 

operator leases bandwidths with QoS guarantees from the underlying Autonomous Systems, (ASes) in the 

form of Service Level Agreements (SLAs). The leased bandwidths act as logical links that connect the SON 

gateways. Once all the logical links are in place, the SON is realized and the overlay network formed is under 

the administration of a single authority.  Because the SON is administrated by a single operator, it is capable 

of providing end-to-end QoS guarantees for the value-added services provided by it (i.e. VoIP, Video 

conferencing, online games, etc). A user with access to the Internet can access the service gateway to use the 

value-added services, provided the hosts holding the contents are also connected to some SON service 

gateways. In a SON, the connections are classified by the origin and the destination (OD) gateways. Users 

pay the service charge based on the origins and destinations of their connections as well as their connection 
durations. It is quite common that in formulating SON network design problems, one may be confronted with 

the choice of choosing to maximize the profit or to minimize the cost, as the design criteria. An interesting 

question is thus raised: since the maximum profit (MP) and the minimum cost (MC) approaches optimize 

different objectives, how do their solutions compare and how does a network designer decide which approach 

to be employed. These questions could be non-trivial under the SON environment. It is because the SON 

operators enjoy great degree of freedom in deploying their own inter-domain routing schemes as the network 

is solely under their administrations. Owning to this flexibility, different network administrators are likely to 

employ different routing schemes that fit their business objectives. The routing scheme employed would 

influence the network design significantly. The conclusions drawn regarding SON design for a particular 

routing scheme may not be valid for another routing scheme. This paper addresses this objective choice 

problem faced by the operators for a class of Service Overlay Network (SON) capacity allocation problems. 
The result does not depend on a specific routing scheme as long as certain conditions are met. This paper is 

structured as follows: Section 2 is the description of the problem assumptions and formulations, Section 3 

discusses the major results, Section 4 shows a simple example that illustrates the results, Section 5 is the 

conclusion section that discusses the conclusions obtained. 



2. THE PROBLEM 

2.1 Problem Formulations 

To deploy a SON, a major challenge faced by the operator would be the optimal amount of bandwidths to be 

leased on the logical links. The allocated bandwidths should fit the economic objective of the operator yet 

meet the user expectation regarding the Grade of Service (GoS) levels.  The Grade of Service (GoS) levels 

are usually quantified by connection blocking probabilities. By considering the SON as a connection oriented 

loss network [5], the SON design problem can be formulated as a constrained maximum profit problem (MP) 

as listed in (2.1a). The problem is assumed to be solved using the Lagrangian relaxation approach [8]. The 

corresponding first order optimality condition and the Hessian matrix for the relaxed problem are listed in 

(2.1b) and (2.1c) respectively. We shall denote formulation (2.1a) as MP in the remainder of this article. 
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In the formulation (2.1a), λij
 is the given poissonian connection arrival rate demanding the connection of the 

node pair (i,j) (i.e. origin gateway is i, destination gateway is j), w
ij
 is the given expected reward generated by 

an admitted (i,j) connection. The symbol Bij denotes the analytical end-to-end blocking probability for 

connections requesting connecting the node pair (i,j) due to lack of available resource.  It is an end-to-end 

blocking probability dependent on the (optimal) routing scheme employed, which usually has a rather 

complex functional form [4]. The GoS constraint for each OD pair (i,j) is given by ij
L , which specifies the 

maximum allowed end-to-end blocking probability. The capacity of a link s is denoted by Ns and it is a 
decision variable of this problem. The function Cs(.) is the cost function that quantifies the cost rate of 

allocating Ns units of capacities on link s (based on some SLA) and it is assumed to be a linear function of the 

variable Ns. The variables uij and zs are the Lagrange multipliers with respect to the constraints. The minimum 

cost formulation (MC) of the same problem, the first order optimality condition and the Hessian matrix of the 

relaxed problem are given by (2.2a), (2.2b) and (2.2c) respectively. The only new notation introduced in 

(2.2a) is
ijv . It is the Lagrange multiplier corresponds to the GoS constraint. We shall denote formulation 

(2.2a) as MC in the rest of the article. It is assumed that both MP and MC formulations employ the same 

(optimal) routing scheme in the routing layer. 
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To analyze the two different formulations, a strict forward way is investigate the corresponding optimality 

conditions since they provide the richest information regarding the optimal solutions. From (2.1b) and (2.2b), 

one can see that the first order necessary conditions of the two formulations are equivalent if the 

expressions *

ijv  and *ij ij

ijw uλ +  are equal for all the OD pairs (i,j), provided the routing dependent functions B
ij
 

are the same. In this case the second order sufficient conditions of the MP and MC will also be the same, as 

the Hessian matrices (2.1c) and (2.2c) are identical then. Therefore, regardless of their different objectives, 



MP and MC could deliver the same solutions if one can set the multipliers *

ij
u appropriately, subject to the 

dual feasibility conditions.  

 

When the solutions of MP and MC coincide, it indicates the cost function dominates the reward function so 

that the incorporation of additional reward information does not differentiate the solutions of MP from the 

solutions of MC. We shall show that under some specific range of reward parameters w
ij
, the costs dominate 

the design. While in other range of the w
ij
 parameters, the reward parameters are large enough to influence 

the network design, so that the solutions by MP and MC are different.  

 

2.2 The End-to-End Blocking Probabilities 

Before any analysis can be made, a proper analytical form of the blocking function, B
ij
, is needed. The actual 

functional form of B
ij
 varies with routing schemes [4]. We take a different perspective and derive it by using 

the insight that the blocking function can be approximated based on the link traffic intensities (at equilibrium) 

and the capacities [11]. Techniques from the reliability theory [9] were used to devise a general and 

functional form for B
ij
, regardless of the actual routing scheme employed. The B

ij
 function obtained below is 

based on the reduced load approximation model [11], which assumed statistical link independence and 

Poisson link arrival rates.  

 

We consider the collection of network paths, that connect a particular origin node i with a particular 

destination node j, as a complete system. The task of this system is to serve the connections between the node 

pair (i,j). Assume the network links are independent of one another. The links in the collection of paths are 
the independent components of the system. Denote these links by s and let Rij be a set that contains all these 

links. Define an indicator variable ys for the link s, whereas ys equals to zero if link s has enough resource to 

admit at least one connection, and ys equals to one if link s does not have resource to serve any connection. 

The expected value of ys is therefore the blocking probability of link s.  According to the reliability theory 

[9], a Boolean function ( )Yφ that indicates whether the system has the available resource for new (i,j) 

connections can be defined by taking Y=[ ys] as the input. The complement of it, ( )Yφ = 1- ( )Yφ is another 

Boolean function that indicates whether the system has ran out of resource for new (i,j)  connections. Thus 

the expected value of ( )Yφ is the end-to-end blocking probability for connection pair (i,j). Since ys are 

independent zero-one random variables and ( )Yφ is a Boolean function, we can perform the Shannon 

decomposition on the function ( )Yφ .  By using link s as the pivot we have (2.3). 
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Where (0 , )s Y and (1 , )
s

Y  are the status vectors that differs only in the s
th
 link. The functions (0 , )

s
Yφ  and (1 , )

s
Yφ  

indicates that whether the system has been blocked given that the link s is in admissible status/has been 
blocked. By the definition of ys, the expectation E[ys] is the blocking probabilities of link s. Assume the links 

are independent and link arrival rates are Poisson, we have expression (2.4). The expectations E[ys] and 

E[ys’≠s] are replaced by the Erlang-B Loss formula Es(.) and the vector 
's sE ≠

 respectively in (2.4). The vector 

's s
E ≠

 denotes the collection of Erlang-B loss functions for all the links s’ such that s’≠s. The continuous 

extension of Erlang-B formula suggested in [1] is being used throughout this article which is given by (2.5) 
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It should be clear now that B
ij
=E[ ( )Yφ ] is a reduced-load approximation of the end-to-end blocking 

probability, as link independence and Poisson link arrival rates are assumed. Note that
2,

ij

s
f ≥0, if the end-to-

end blocking probability B
ij
 is strictly decreasing in the presence of additional available link

*
.  This is a 

                                                
*
 

2,

ij

s
f  is the Birnbaum’s importance measure of link s in the context of reliability theory. 



monotonic property we imposed on the routing schemes and it is assumed throughout the article. We also 

impose the assumption that the routing objective function being uni-modular with respect to the capacities.  
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Since the value of the Erlang-B formula can be uniquely determined by the link capacity and the link traffic 

arrival rate [4], therefore (2.4) is rewritten to (2.6) to explicitly state the dependence of B
ij
‘s on the 

(equilibrium) link traffic intensities and link capacities. 
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Expression (2.6) is valid for all the link s. So we can represent B
ij
 in the form of 

1,

ij

s
f +

2,

ij

s
f Es(λs,Ns) for every 

link s, where 
1,

ij

s
f and 

2,

ij

s
f  are independent of the link s. In a similar spirit, and by applying the Shannon 

decomposition again on expression (2.6), B
ij
 can be further decomposed in terms of the blocking probabilities 

of link s and link s’ , as shown in (2.7). 
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The symbols 0s’ and 1s’ in (2.7) indicate the statuses of the link s’. For an instance, 
1,

ij

s
f (1s) indicates the 

function 
1,

ij

s
f (.) given that link s’ has been blocked.  The functions f1

ij
(.) and f2

ij
(.) in (2.7) are independent of 

both link s and s’.  By using expressions (2.6), the optimality conditions (2.1b) and (2.2b) are rewritten to 

(2.8) and (2.9). 
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Assume the continuous Erlang-B formula in [1] is employed. Then the second derivatives exist as the Erlang-

B formula is a C
∞
 function [2]. By using (2.6) and (2.7), the elements of the Hessian matrices of (2.1c) and 

(2.2c) are rewritten to (2.10) and (2.11) respectively.  
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3. THE EQUIVALENCE OF THE MP AND THE MC FORMULATIONS 

Note that from the new optimal conditions (2.8) and (2.9), if the sums *
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be made identical for all the links at the optimal solution of MC, the first order optimality conditions of MP 

and MC will be identical.  The second order optimality conditions will then also be identical. To see this, we 

compare the corresponding terms of the Hessian matrices in (2.1c) and (2.2c) by using (2.10) and (2.11). 
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 where ys’ can be either 0 or 1. It is easy 

to see the Hessian matrices of the two formulations are identical. Hence the second order optimality 

conditions are also identical.  Therefore the problem now amounts to showing the existence of a set of strictly 

positive (dual feasible) multipliers *

ij
u , such that the two aforesaid sums can be made equal. We shall show the 

general conditions for the multipliers to exist using the Farkas’s lemma [8], instead of the regularity 



condition. No assumption regarding the number of OD pairs and network links is made. Without loss of 

generality, let’s assume the OD pairs are indexed from 1 to |ij|, where |ij| is number of distinct OD pairs. Let’s 

also assume the links are indexed from 1 to |s|, where |s| is the total number of links in the network. Define a 

matrix A and a vector B as in (3.1). Then the non-negative matrix A that has a dimension of |s|×|ij|. The 

function 
2, (.)
ij k

s
f

=  in the matrix A indicates that it is contained in the blocking function of the k
th

 OD pair and it 

is the f2
ij
 function of the link s. The function takes the optimal solution of the MC formulation as input. The 

vector B has a dimension of |s|×1. The problem of finding a set of non-negative *

ij
u  is equivalent to finding a 

strictly positive vector U* such that AU*=B. Obviously a necessary (but not sufficient) condition is that 

vector B must be strictly positive, as all the elements of A are non-negative.  

 

1

*

2,11 | |

2,1 2,1

1 | | *

2,| | 2,| | 2,| |

( ) (.)
(.) (.)

                                                    

(.) (.) ( ) (.)
s

ij ij ij

ijij ij ij
ij

ij ij ij ij ij ij

s s ij s

ij

v w f
f f

A B

f f v w f

θ

θ

λ

λ

= =
∈

= =

∈

 − ×
   
   

= =   
   − ×    

∑

∑

�

� � � �

�

                                                                    (3.1) 

1 | | 1 | |

2, 2,
(.) , , (.) = [ ,..., ]   0                                                                                                                                    

T

T ij ij ij ij T T

s s s s

s s

A p p f p f η η= = 
= ≥ 
 
∑ ∑�                                 (3.2)

 

 

By the Farkas’s lemma, there exists a strictly positive U*, if and only if we can show that for every vector P 

such that A
T
P≥0,  the  inner  product  B

T
P  is non-negative. Which is  shown  in  expression  (3.3). Note that 

 

 

d
ij
=(vij

*
 -λ

ij
w

ij
) are not restricted in sign. If (3.3) is always non-negative, then there exists a set of Lagrange 

multipliers U* such that the MP formulation can be made equivalent to the MC formulation. Looking back at 
(3.1) and (3.2), it is possible to set some η

ij
 arbitrarily large by properly picking value(s) for ps for some 

instances of A. Since d
ij
 are not restricted in sign, the inner product of (3.3) can not be always non-negative 

unless some further constraints are imposed on the routing matrix A. The only case that (3.3) is always 

positive, regardless of the A matrix, occurs when all the dij are non-negative. This implies condition (3.4). 

This is also the result one can obtain by using the regularity assumption.   
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Condition (3.4) is the sufficient condition such that the MP and MC formulations can be made equivalent, 

regardless of the routing scheme employed. So the following results are valid for all routing schemes that are 

monotonic and uni-modular. We first need to establish the uniqueness of the allocated link capacity with 

respect to the link cost, a set of real values vij, and the link traffic intensity vector Λs.  Define
s

θ  to be a set 

which contains indexes of all the OD pairs that utilize link s in at least one of their paths. Let Ns be the 

capacity of a link s, which is assumed to be continuous. Let cs be the cost of allocating one unit of capacity on 

link s. Let ( , )
s s s

E Nλ  denote the Erlang-B formula with offered traffic intensity λs and link capacity of Ns. 

 

Lemma 1 

For positive constants vij, cs, and fixed Λs, there exists at most one Ns on the link s that satisfies the following 

equation: 
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Proof: 

Assume the continuous extension of Erlang-B formula suggested in [1] is being employed. Note that the 

function f2
ij
= E[ (1, )

s
Yφ - (0, )

s
Yφ ] is the same as the one defined earlier and it is strictly positive (since we imposed 

the condition ij∈θs). The values λs are the elements of Λs. We rearrange the terms and get (3.6): 
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Because the functions
2,

ij

s
f is independent of Ns, it can be regarded as a positive constant functions with respect 

to Ns. Denote ( , )
( )s s s

s

E N

N
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∂

 by 
3( , )s sf Nλ . It is known that the continuous Erlang-B formula is a C∞ function [2], 

which is strictly convex in the capacity [1]. Therefore for a fixed λs, the function f3(.) is strictly decreasing 

and continuous in Ns, and there is an one-to-one correspondence between the function’s value and Ns for the 

fixed λs. Moreover it can be seen that f3(.) is positive (because when Ns is increased by delta, the blocking 

function -Es(.) always increases if λs is fixed ), so for positive constants vij, cs, and fixed offered traffic 

intensity λs on the link, there is a unique Ns that satisfies equation (3.6). There are two special cases for 

expression (3.6), first if the LHS of (3.6) is larger than
3max( ( , ))

s

s s
N

f Nλ  then Ns does not exist, second if the 

cost cs equals to zero, then Ns  equals infinity.  □ 

 

The physical interpretation of Lemma 1 is that when the link traffic intensities are fixed, then for each set of 
cs and vij, there is at most one Ns value that solves (3.5) and thereby satisfying the 1st order necessary 

conditions. Lemma 1 provides a tool for us to show the conditions such that MC and MP are equivalent. The 

following theorem will establish the relationship between MC and MP under some specified conditions.  

 

Theorem 1 

Consider a MP formulation (2.1a) and a MC formulation (2.2a) of the SON capacity allocation problem. If a 

set of Lagrange multipliers *

ij
v exists for the MC formulation, and if the condition (3.4) is satisfied, then an 

optimal solution of the MC formulation is also an optimal solution of the MP formulation. Further if the set 

of *

ijv  is unique, then MP and MC formulations are equivalent.  

 
Proof: 

The stationary conditions for MP and MC are (3.7) and (3.8) respectively. All the symbols have been defined 

earlier. Note that (3.7) and (3.8) both represent n sets of equations where n equals to the number of links in 

the network. 
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Suppose *

ijv  are the Lagrange multipliers at optimality for MC.  If (3.4) is satisfied, then it is possible to find 

a vector of non-negative U*=[ *

ij
u ]such that 
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all the n pairs of equations in (3.7) and (3.8). Assume a vector of link intensities *c
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Λ  is designated by some 

optimal routing rules, and suppose the tuple ( *c
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s s sN NΛ = Λ , is a solution that 

satisfies (3.8) and also the complementary slackness conditions. Then it is obvious from Lemma 1 that the 

solution ( *c

s
Λ , * *

( )
c c

sN Λ ) is unique with respect to *c

s
Λ . Now if we substitute the solution ( *c

s
Λ , * *

( )
c c

sN Λ ), along 

with *

ij
u  into (3.7), then (3.7) should be satisfied if (3.8) is satisfied. This is because 

that
* * *

2, ' '

' '

( ) ( , )
ij ij

s

ij ij ij c c

ij s s R s R

s s s sij

w u f N
θ

λ λ ∈ ∈
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+ ×∑
=

* * *

2, ' '

' '

( , )
ij ij

s

ij c c

ij s s R s R

s s s sij

v f N
θ

λ ∈ ∈
≠ ≠∈

×∑
 for all the n equations, and also because that the 

expression 
* *

( , )

( )

s s s

s s

E N

N

λ−∂

∂ Λ

 depends only on *

s
Λ and * *( )

s s
N Λ . The complementary slackness conditions are also 

satisfied since the constraints of MP and MC are identical. In other words, when (3.4) is satisfied, a solution 

that satisfies the first order necessary condition of MC must also be able to satisfy the first order necessary 

condition of MP. With the same set of *

ij
u , the second order sufficient condition check is trivial, because the 

Hessian matrices of the corresponding Lagrangian duals are identical (see (2.10) and (2.11)). Therefore we 



have shown that the optimal solution of MC is also an optimal solution of MP.  Further to this, if the set of *

ij
v  

is unique and condition (3.4) is satisfied, then formulations MP and MC are equivalent. This can be proved 

by contradiction. If there exists another set of multipliers X*=[ *

ij
x ] such 

that
* *

2, 2,
( ) (.) (.)

s s

ij ij ij ij

ij s ij s

ij ij

w x f y f
θ θ

λ
∈ ∈

+ × = ×∑ ∑
*

2,
(.)

s

ij

ij s

ij

v f
θ∈

≠ ×∑  for MP, where * 0
ij

x ≥  and * 0
ij

y ≥ . Then the corresponding 

optimal solution, ( *p

s
Λ , * *

( )
p p

s sN Λ ), satisfies both the necessary and sufficient conditions of the formulation 

(2.1a).  It is obvious that the multipliers * *( )ij ij

ij ijy w xλ= +  along with ( *p

s
Λ , * *

( )
p p

sN Λ ) satisfy (3.8). The 

complementary slackness conditions are also satisfied because (2.1a) and (2.2a) have the same constraints. 

So the first order optimality condition of MC will be satisfied by this solution. Moreover this solution must 

also satisfy the second order necessary conditions of MC as long as it satisfies these conditions for MP. That 

implies Y*=[ *

ij
y ] is also a set of multipliers for MC. But this contradicts with the claim that MC has a unique 

set of multipliers. Therefore it is impossible for the set of *

ij
x  to exist.  As a result MP also has a unique set of 

multipliers (i.e. U*=[ *

ij
u ]). This shows that both MP and MC give the same optimal solution, and are 

therefore equivalent. □ 

 

Assume there exists a unique set of multipliers for the MC formulation and the corresponding *

s
Λ  is unique; 

the above theorem indicates that if the service charges are lower than some values (i.e. (3.4) is satisfied), MC 

and MP give the same solution. For the other regions, MC and MP will be (strictly) different. It can be shown 

that the MP formulation offers a solution with strictly more profit and strictly better GoS guarantees in these 

regions. Owing to the space limitation, these results are discussed in an extended version of the current 

article, the monotone property of the routing scheme will be critical in showing the results.  

4. AN ILLUSRATING EXAMPLE 

Consider a simple SON network as shown in figure 1. Assume the offered traffic intensities for the three 

independent Poisson streams are λAB=10 units per unit time, λCB =15 units per unit time, λAC =20 units per 
unit time. To make the discussion simple, all the traffic streams are routed through direct links. Without loss 

of generality the mean holding times of the traffic are assume to be identically distributed with unit mean. 

The costs of leasing one unit of bandwidth for one unit of time are 5 units, 6 units and 7 units respective for 

links AB, CB, and AC, the allocated capacities are assumed to be integral values. Assume that GoS 

requirements for all the streams are 0.1 (i.e. 10% probability of blocking), this value is deliberately made 

large so as to facilitate easy comparison. The multipliers *

ABv , *

CBv  and *

ACv  are found to be 182, 267 and 372 

respectively (which translates to service charges of 18.2, 17.8 and 18.6). We set the service charges to be (10, 

10, 10) for the streams AB,CB and AC. Condition (3.4) is satisfied under this set of service charges, as all the 
d

ij
 are positive. Table 1 summarizes the results obtained. It is noted that under these service charges, the MP 

and MC formulations exactly give the same allocated capacities even though the objective values are 

different,  which illustrates the result in theorem 1.  

 
                                                                                       Table 1.  Capacity allocation results for low service charge. 

 

                       Figure 1. A simple SON network.            

 

Service charges 

(10,10,10) 
MP formulation MC formulation 

GoS  (λAB, λCB,λAC) (0.084, 0.086, 0.085) (0.084, 0.086, 0.085) 

Allocated capacities 

on links  

(AB, CB ,AC) 

(13, 18, 23) (13, 18, 23) 

Cost 334 334 

Objective value -77.65 334 

Expected Profit rate 77.65 77.65 



If, on the other hand, we set the service-charge vector such that it is profitable to offer the GoS (strict 

condition for “profitable” is not shown due to space limitation). The solution of MP formulation offers 

strictly lower blocking probabilities than that of the MC formulation and the profit of MP design surpasses 

that of the MC design. 

5. CONCLUSIONS AND FUTURE WORKS 

We studied a class of Service Overlay Network (SON) capacity allocation problem with GoS constraints. We 

showed the condition such that the MP and MC formulations are equivalent. Intuitively one can view the 

region that the MP and MC are equivalent to be the region that is not profitable to offer the required GoS 

guarantees. In this region the MP formulation minimizes the cost of offering GoS just like the MC 

formulation. In the profitable regions, however, MP takes advantage of that and allocates more resource 

whenever necessary to avoid potential profit losses (results not shown due to space limitation). This is an 

attractive feature because the MP approach automatically “decides” whether to minimize the cost or to 

maximize the profit in an optimal sense. The MC approach, on the other hand, does not have this capability. 

In cases that GoS requirements are based on some non-economic considerations (for example GoS can be 

decided by external entities like the regulating authorities), the MP approach will provide solutions with 

better values than that of the MC approach as the MP approach will be sticking blindly to the potentially 

arbitrary GoS requirements.  The major computation efforts for both formulations will be on solving the 

optimal routing sub-problem and on calculating the gradients of B
ij
. The computational costs for both models 

are therefore similar.  

REFERENCES 

[1]  A. Jagers and E. V. Doom, 1986. On the continued Erlang loss function. Operations Research Letters, Vol. 5, No. 1, 
pp. 43-46. 

[2]  J. S. Esteves, J. Craveirinha, and D. M. Cardoso, 2006. Second order conditions on the overflow traffic from the 
Erlang-B system, Cadernos de Matemática, Universidade de Aveiro, CM06/I-20. 

[3]  A. Girard and B. Liau, 1993. Dimensioning of adaptively routed networks, IEEE transactions on networking, Vol. 1, 
No. 4, pp. 460-468. 

[4]  A. Girard, 1993. Revenue optimization of telecommunication networks, IEEE transactions on communications, Vol. 
41, No. 4, pp. 583-591. 

[5]  F.P. Kelly, 1988. Routing in circuit-switched networks: Optimization, Shadow Prices and Decentralization, 
Advanced in applied probability, Vol. 20, No. 1, pp. 112-144. 

[6]  N. Lam, Z. Dziong and L.G. Mason, 2007. Network capacity allocation in service overlay networks, Proceedings of 
20th International Teletraffic Congress (ITC), Ottawa, pp. 224-235. 

[7]  A. Girard, 1990. Routing and dimensioning in circuit-switched networks. Addison-Wesley, USA. 

[8]  D. P. Bertsekas, 1999. Nonlinear Programming, 2nd edition, Athena Scientific, USA.  

[9]  Wallace R. Blischke,  D.N. Prabhakar Murthy, 2000. Reliability Modeling, Prediction, and Optimization. John Wiley 
& Sons, USA.  

[10] Sheldon M. Ross, 2000. Introduction to Probability Models, 7th edition, Academic Press, USA. 

[11] W. Whitt, 1985. Blocking when Service is Required from Several Facilities Simultaneously, AT&T Technical 

Journal, vol. 64, No. 8, pp. 1807-1856. 

[12] Z. Duan, Z. L. Zhang, and Y. T. Hou, 2003. Service Overlay Networks: SLAs, QoS, and bandwidth provisioning, 

IEEE/ACM Transactions on networking, Vol.11, No. 6, pp. 870-883. 

 


