
 

 

  

Abstract— We studied a class of Service Overlay Network (SON) 

capacity allocation problem. By analyzing the problem with two 

different nonlinear optimization formulations, we show that the prices 

of offering service guarantees are closely related to a set of Lagrange 

multipliers. Moreover, if the Grade of service (GoS) constraints are 

not hard requirements, the network design resulting from the set of 

prices is on the Pareto frontier of a bi-objective optimization problem. 

A scheme was developed to derive the prices for various classes of 

customers by referring to the Lagrange multipliers. The major 

contribution of the article is the use of the Lagrange multipliers to 

provide a set of Pareto efficient prices in providing GoS guarantees. 

 

Keywords—Service Guarantees, Network Pricing, Network 

Management. 

I. INTRODUCTION 

The demand for end-to-end Quality of Service (QoS) 

guarantees in the Internet has increased significantly due to the 

introduction of new applications like VoIP, online gaming, and 

video conferencing. This poses a major challenge to the current 

Internet architecture. Owing to historical reasons, the Internet 

consists of a large collection of independent Autonomous 

Systems (ASes). In order to ensure end-to-end QoS guarantees 

of the data, one has to build a multi-lateral business 

relationship with all the independent ASes his data transit. 

This makes it unrealistic to obtain end-to-end QoS guarantees. 

A higher level mechanism on the top of the Internet known as 

Service Overlay Network (SON) is thus proposed to alleviate 

this problem [10].  The SON network operates in a manner 

similar to a virtual network. The SON operator owns the SON 

gateways which are placed in strategic locations. To realize the 

SON network, the SON operator leases bandwidths with QoS 

guarantees from the underlying Autonomous Systems, (ASes) 

in the form of Service Level Agreements (SLAs). The leased 

bandwidths act as logical links that connect the SON gateways. 

Once all the logical links are in place, the SON is realized and 

the overlay network formed is under the administration of a 

single authority.  Because the SON is administrated by a single 

operator, it is capable of providing end-to-end QoS guarantees 
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for the value-added services provided by it. A user with access 

to the Internet can access the service gateway to use the 

value-added services, provided the hosts holding the contents 

are also connected to some SON service gateways. In a SON, 

the connections are classified by the origin and the destination 

(OD) gateways. Users pay the service charge based on the 

origins and destinations of their connections as well as their 

connection durations. Figure 1 shows an example of the SON 

network. 

Once the SON network has been designed and realized, a major 

challenge to the SON operator would be to charge the services 

appropriately.  The prices should generate maximal economic 

benefits to the operator. Yet they should also be reasonable with 

respect to the users’ budgets. In this article, we introduce a set 

of pricing metric that enables the SON network to generate 

profit optimally while providing the Grade of Service 

guarantees (GoS) to the users.  It can be shown this pricing 

metric is minimal, and it is a Pareto efficient solution to a 

bi-objective optimization problem that maximizes the utilities 

of both the operator and the user. This article is organized as 

follows: Section II is the description of the problem 

assumptions and formulations, Section III discusses the major 

results, Section IV shows a simple example that illustrates the 

results, Section V is the conclusion section that concludes the 

results obtained. 

II. PROBLEM FORMULATIONS 

A. The optimization models 

To decide the optimal amount of bandwidths to be allocated on 

the logical links, operator usually resort to two distinct yet 

related mathematical models, namely the Maximum Profit(MP) 

and the Minimum Cost(MC) models. We assume that the 

operator considers profit as the primary performance measure 

for the network. Therefore the operator is assumed to employ 

the MP model. By considering the SON as a loss network [5], 
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Fig. 1.  An example SON network. 

  



 

 

the MP model is given by (2.1a). The problem is assumed to be 

solved using the Lagrangian relaxation approach in [3]. The 

first order optimality condition of (2.1a) is listed in (2.1b). We 

shall denote formulation (2.1a) as “F1” in the rest of this 

article. 
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In the formulation (2.1a), λij
 is the given poissonian connection 

arrival intensity demanding the connection of the node pair (i,j) 

(i.e. origin gateway is i, destination gateway is j), w
ij is the 

expected service charges (prices) paid by an admitted (i,j) 

connection. The symbol Bij
 denotes the analytical end-to-end 

blocking probability for connections of the node pair (i,j), due 

to lack of available resource.  It is an end-to-end blocking 

probability dependent on the (optimal) routing scheme 

employed. The capacity of a link s is denoted by Ns and it is a 

decision variable of this problem. The function Cs(.) is the cost 

function that quantifies the cost rate of allocating Ns units of 

capacities on link s (based on some SLA) and it is assumed to 

be a linear function of the variable Ns. The variables zs is the 

Lagrange multipliers to ensure non-negative capacity 

assignments.  

 

The users of the SON may desire a certain level of service 

guarantee so that their connection requests are granted with 

probabilities higher than some thresholds. If the operator is to 

fulfill this expectation, they need to allocate additional 

resources on the logical links. This introduces extra costs. The 

minimum cost design that satisfies the grade of service 

expectations is a solution which requires the minimum 

investment to realize the service guarantees. It is the solution of 

the formulation (2.2a). The corresponding first order 

optimality condition is given by (2.2b) 
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Two new notations are being introduced in (2.2). The first new 

notation is ij
L , which specifies the user desired threshold on 

the end-to-end blocking probability for connections of the OD 

pair (i,j). The second new notation is
ij

v , it is the Lagrange 

multiplier corresponds to the GoS constraint. We shall denote 

formulation (2.2a) as “F2” in the remainder of the article.  

Without loss of generality, we assumed that both the F1 and F2 

formulations employ the same (optimal) routing scheme in the 

routing layer. We shall show in the following sections that the 

multipliers 
ij

v from F2 is a set of Pareto efficient solution that 

maximizes the user utility and the objective of F1.  

 

B. The end-to-end blocking probabilities 

The end-to-end blocking function B
ij is a fundamental 

component of the formulations F1 and F2. The actual 

functional form of Bij varies with routing schemes [4]. We take 

a different perspective and derive it by using the insight that the 

blocking function can be approximated based on the link 

connection intensities (at equilibrium) and the capacities [4]. 

Techniques from the reliability theory [7] were employed to 

devise the general functional form for B
ij, regardless of the 

actual routing scheme employed. The B
ij function obtained 

below is based on the reduced load approximation model [9], 

which assumed statistical link independence and Poisson link 

arrival rates.  

 

We consider the collection of network paths, that connect a 

particular origin node i with a particular destination node j, as 

a complete system. The task of this system is to serve the 

connections between the node pair (i,j). Assume the network 

links are independent of one another. The links in the 

collection of paths are the independent components of the 

system. Denote these links by s and let Rij be a set that contains 

all these links. Define an indicator variable ys for the link s, 

whereas ys equals to zero if link s has enough resource to admit 

at least one connection, and ys equals to one if link s does not 

have resource to serve any connection. The expected value of ys 

is therefore the blocking probability of link s.  According to the 

reliability theory [7], a Boolean function ( )Yφ that indicates 

whether the system has the available resource for new (i,j) 

connections can be defined by taking Y=[ ys] as the input. The 

complement of it, ( )Yφ = 1- ( )Yφ is another Boolean function 

that indicates whether the system has ran out of resource for 

new (i,j)  connections. Thus the expected value of ( )Yφ is the 

end-to-end blocking probability for connection pair (i,j). Since 

ys are independent zero-one random variables and ( )Yφ is a 

Boolean function, we can perform the Shannon decomposition 

on the function ( )Yφ .  By using an arbitrary link s as the pivot 

we have expression (2.3). 
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Where (0 , )
s

Y and (1 , )s Y  are the status vectors that differs only 

in the sth link. The functions (0 , )s Yφ  and (1 , )s Yφ  indicates that 

whether the system has been blocked given that the link s is in 

admissible status/has been blocked. By the definition of ys, the 

expectation E[ys] is the blocking probabilities of link s. Assume 

the links are independent and link arrival rates are Poisson, we 

have expression (2.4). The expectations E[ys] and E[ys’≠s] are 

replaced by the Erlang-B Loss formula Es(.) and the vector 
's s

E ≠
 

respectively in (2.4). The vector 
's s

E ≠
 denotes the collection of 

Erlang-B loss functions for all the links s’ such that s’≠s. The 

continuous extension of Erlang-B formula suggested in [1] is 

being used throughout this article and it is shown in (2.5). 
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It should be clear now that B
ij=E[ ( )Yφ ] is a reduced-load 

approximation of the end-to-end blocking probability, as link 

independence and Poisson link arrival rates are assumed. Note 

that
2,

ij

sf ≥0, if the end-to-end blocking probability Bij is strictly 

decreasing in the presence of additional available link (
2,

ij

sf is 

the Birnbaum’s importance measure of link s in the context of 



 

 

reliability theory).  This is a monotonic property we imposed on 

the routing scheme and it is assumed throughout the article. We 

also assume another monotonic property such that the routing 

scheme does not decrease the (equilibrium) link connection 

intensity as the capacity of the link increases. Finally we 

assume that the routing objective function is uni-modal with 

respect to the capacities.  
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Since the value of the Erlang-B formula can be uniquely 

determined by the link capacity and the link connection arrival 

rate [1], therefore (2.4) is rewritten to (2.6) to explicitly state 

the dependence of B
ij‘s on the (equilibrium) link connection 

intensities and link capacities. 
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Expression (2.6) is valid for all the link s. So we can represent 

B
ij in the form of 

1,

ij

sf +
2,

ij

sf Es(λs,Ns) for every link s, where 

1,

ij

sf and 
2,

ij

s
f  are independent of the link s. Note that 

2,

ij ij

s
fλ is the 

connection intensities to the link s from the OD pair (i,j). 

III. MAIN RESULTS 

A. Optimal Grade of Service Guarantees 

We shall show in this section that, if the service charge is high, 

and if the operator’s objective is to maximize the profit (using 

F1), then the optimal decision for the operator is to offer better 

GoS guarantees. Intuitively this means that the operator should 

deliver a lower blocking probability to high-reward 

connections so as not to miss profit making opportunities.   

 

We assume the relaxation scheme in [3] is being employed to 

solve F1. This approach solves the exact first order condition 

instead of the linearized approximation (i.e the Netwon’s 

method [6]) in each iteration.  The scheme solves the set of first 

order optimality conditions based on the previous solution, and 

the iteration continues until a stationary point is reached. 

 

Lemma 1 below establishes the relation between the optimal 

capacities allocated and the magnitude of service charges. 

Consider equation (3.1), where cs is a positive constant, v is a 

positive number,  Es(.) is the Erlang-B formula as defined in 

(2.5), λs is the connection intensity on link s, v

s
N is the capacity 

allocated on link s. Then the following lemma holds. 

 

Lemma 1: If λs is fixed in (3.1), and v1, v2 are two real numbers,  

where  v1 > v2 > 0 , then we have 1v

s
N > 2v

s
N , where 1v

s
N  and 2v

s
N  

are the values of Ns
v in (3.1) And v1, v2  are the values of v in 

(3.1). 
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Proof: 

It is known that the Erlang-B formula is a C∞ function [2], 

which is strictly convex in the capacity [1]. Therefore for a 

fixed λs, the function ( , )v
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 will be required to satisfy the equality 

condition of expression (3.1). This therefore requires a 

larger v

s
N value. As a result if  v1 > v2 > 0 and if 1v
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exist then 1v

s
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N .□ 

 

Theorem 1: Assume the routing scheme does not decrease the 

(equilibrium) link connection intensity as the capacity of a link 

increases. Then the optimal GoS derived by F1 is an increasing 

function of the service charge vector W=[wij]. 

Proof:  

    Suppose the optimization approach in [3] is employed to 

solve the problem. Assume the method converges to the 

optimal solution. By using (2.5), the first order optimality 

condition (2.1a) is re-written to (3.2), note that (3.2) represents 

n set of equations where n equals to the number of links in the 

network.  
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Now consider two vectors of service charges, W=[wij] and 

W’=[wij +∆w
ij], where ∆w

ij>0. Assume that the optimal 

solution with respect to the vector W is denoted by the tuple 

( WΛ , ( )W WN Λ ), where WΛ =[ W

s
λ ] is the link connection 

intensity vector decided by some optimal routing rules, 

( )W WN Λ =[Ns] is the optimal capacity allocation on the logical 

links. Now consider the case that ( WΛ , ( )W WN Λ ) is regarded as 

the initial solution of the F1 (with parameters W’).  Substitute 

( WΛ , ( )W WN Λ ) into the optimality condition (3.2), note that the 

service charges are now W’, and we have 
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lemma (1) the allocated capacities on all the link strictly 

increases at the end of the first iteration. Since the equilibrium 

connection intensity is non-decreasing when link capacity 

increases, therefore and 
2,

ij

s
f increases at the end of the first 

iteration. This makes 
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further, and the capacities are augmented further. This 

augmentation process continues until the optimal solution 
' '( )W W

N Λ is reached, and the system of equations in (3.2) reach 

a fixed point. Therefore we have ' '( ) ( )W W W WN NΛ > Λ  at the 

optimality. Now because of the monotonic assumption of the 

routing scheme and also because ' '( ) ( )W W W WN NΛ > Λ , the GoS 

guarantees offered by ' '( )W W
N Λ   is strictly better than that 

being offered by ( )W WN Λ .  One can consider the set of resulting 

GoS guarantees as the optimal GoS guarantees, as they are 

achieved when the profit from the SON is maximized. □ 

 

Theorem 2: Assume the user-desired GoS guarantees are 

denoted by ij
L , (i.e. the users of OD pair (i,j) desires an 

end-to-end blocking probability of ij
B  less than ij

L ). Then the 

minimum charge they need to pay to the operator is defined by 



 

 

(3.3). The symbols *

ij
v  in (3.3) are the Lagrange multipliers of 

the formulation F2 with the set of user desired ij
L as 

constraints. 
* /                                                                                                    (3.3)ij ij

ij
w v λ=  

Proof:  

    The minimum cost assignment which satisfies the desired 

GoS levels satisfy the equations in (2.2b). Assume the operator 

design the SON network by using formulation F1. If the service 

charges defined in (3.3) are substituted into (2.1b), it is easy to 

see that expressions (2.2b) and (2.1b) become identical, the 

second order optimality conditions will also be the same (see 

[8] for details), and F1 gives the same capacity assignments as 

F2. Therefore if the users pay the service charges defined by 

(3.3), they will get the desired GoS guarantees from the 

operator even if the operator designs the networking using F1. 

Theorem 1 implies the GoS level decreases when the service 

charge decreases. Assume the same conditions on the routing 

scheme as being assumed in theorem 1 hold, then the service 

charges defined by (3.3) is the minimum charge the users need 

to pay in order to enjoy the desired levels of GoS guarantee if 

the operator designs the network using F1. □ 

 

 Theorems 1 and 2 can be illustrated through the use of a 

figure below. Figure 2 shows the profit contours for a one-link 

network, there is only one OD pair (i,j), and it is connected 

together by a link. Each blue line in figure 2 corresponds to the 

expected profit from the link under a particular connection 

service charge w
ij. The x-axis corresponds to the capacity 

assigned to this link and the y-axis corresponds to the expected 

profit rate from the link. The red dots are the points that 

generate the maximum expected profits with respect to the wij, 

thus the red dots denote the optimal solutions of F1 under the 

parameters wij. For clear illustration, an arrow is drawn to point 

the direction of increasing w
ij. As w

ij
 increases, the optimal 

capacity allocation (i.e. the x values of the red points) also 

increases.  A vertical black line was drawn to indicate the 

minimum capacity required for a desired level of GoS. There is 

a red dot that intersects with the black line.  This particular red 

dot is the optimal solution of the formulation F2 with the GoS 

constraints (it is also a solution of F1 with respect to the 

particular parameter wij). The reward wij on this very red dot, 

corresponds to the value of *
/  

ij ij

ij
w v λ= as defined in (3.3). 

This is the minimum service charge the users need to pay in 

order to enjoy the desired GoS level. If the service charge is 

higher than this particular wij, the connections will be assigned 

larger capacities and enjoy even better GoS guarantees. The 

service charges defined in (3.3) can be interpreted as the 

minimum service charges that drive the network operator to 

offer the levels of GoS desired  by its users. We shall show in 

the following sub-section that this set of service charges is a 

Pareto efficient solution to a bi-objective optimization problem. 

  

B. Pareto efficient pricing 

Assume that the utility of operator is an increasing function of 

total expected profit gained from the SON, then F1 will be 

employed to design the SON network. Denote the utility 

function of the users of OD pair (i,j) by 
ij

U . Assume all the user 

of the connection pair (i,j) desire a certain level of GoS 

guarantee, denote it by ijL . If this level of GoS guarantee is not 

achieved, then we have ( , ) ( , )
ij ij ij

ij ijU L M U L x> , for all and 0 ≤ x 

<M
ij, where ijL  is an abuse of the symbol to indicate that the 

GoS level is below ijL , and  M
ij is the maximum amount of 

money that users of the OD pair (i,j) are willing to pay for the 

service. Assume that the users always prefer low service charge 

so we have ( , ) ( , ),    ij ij ij ij ij ij ij

ij ij
U B x U B y M y x> ≥ > . Where ijB is the 

GoS perceived by the users, ijx and ijy denote the monetary 

values the users pay. Assume further that the utility 
ij

U  only 

depends on the service charge when ijL is satisfied. Consider 

the problem of maximizing both the user utility and the 

operator utility in the bi-objective optimization formulation as 

shown in (3.4), assume this problem is feasible. 
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Lemma 2: fo is an increasing function of wij. 

Proof:   

   Consider the case that wij is increased by ∆w
ij>0, assume the 

original service charge vector be W=[wij], denote a new reward 

vector by W’ where W’ is larger than W by ∆w
ij at the ij

th 

element.  Substitute W’ into fo at the optimal solution of the 

original W (i.e. B
ij and Ns remain unchanged), the value 

increases even without re-optimization. Since the value of fo 

can only increase after re-optimization, so we have fo (W’)> fo 

(W). □ 

 

It can be shown that the set of service charges defined in  

(3.3)  is a minimum Pareto efficient solution to the bi-objective 

problem in (3.4). 

 

Theorem 3. The set of service charges defined in (3.3) is the 

minimum Pareto efficient solution to (3.4).  

Proof:  

   Since wij  in (3.4) is bounded and closed, the feasible set of 

(3.4) is compact. Now consider two possible deviations of wij. 

a) if wij is increased by a positive amount of ∆w
ij, assume this 

 
Fig. 2.  An example to illustrate that GoS offered by F1 is  

an increasing function of the service charges  



 

 

move is feasible, then fo increases according to lemma (2). Now 

since W’>W, so according to theorem 1 and 2, the preferred 

GoS levels are all satisfied. From the definition of 
ij

U  we know 

that ( ) ( )
ij ij ij

ij ijU w U w w> + ∆ . So fo is improved by increasing wij  (by 

Lemma 2) but fc
  is worsened, and W is not dominated by W’.  

 b) if w
ij is decreased by a positive amount of ∆w

ij, then 

according to lemma (2), fo decreases. Moreover since W’<W, 

then according to theorems 1 and 2, the GoS desired by the ijth 

users is not satisfied. From the definition of user utility we 

have ( , ) ( , ) ( , )ij ij ij ij ij ij ij

ij ij ij
U L w U L M U L w w≥ > − ∆ . Therefore both fo  and fc

 

are worsened, and W’ is dominated by W.  

From part b of theorem 3, It can be seen that W is a minimum 

Pareto efficient vector. □ 

IV. A SIMPLE EXAMPLE  

We shall show the results using an example. Consider a simple 

SON network in figure 3. Assume there are three Poisson 

streams of connections, with intensities λAB=10 units per unit 

time, λCB =15 units per unit time, λAC =20 units per unit time 

respectively. To make the discussion simple, all the connection 

streams are routed through the direct links. The mean holding 

times of the connections are assumed to be identically 

distributed with unit mean. The costs of leasing one unit of 

bandwidth for one unit of time are 5 units, 6 units and 7 units 

respective for links AB, CB, and AC, the allocated capacities 

are assumed to be integral values. Assume all the users desire a 

GoS level of 0.1. Assume that the operator considers profit and 

the primary performance metric of the network and F1 is 

employed to design the network. By using F2, we found the 

multipliers *

AB
v , *

CB
v  and *

AC
v  to be 182, 267 and 372 respectively 

(which translates to service charges of 18.2, 17.8 and 18.6 

according to (3.3)). These service charges are substituted into 

F1 and the optimal solution is shown in table 1.  

 
Table 1.  Capacity allocation results for low service charge  

Service charges  

(18.2, 17.8,18.6) 
Formulation F1 

GoS  (λAB, λCB,λAC) (0.084, 0.086, 0.085) 

Allocated capacities  
on links  (AB, CB ,AC) 

(13, 18, 23) 

Cost 334 

Objective value -417.13 

Expected Profit rate 417.13 

 

It can be seen from table 1 that all the desired GoS levels are 

achieved when the users pay according to the expression (3.3). 

The granularities of the GoS levels are not fine because of the 

integral nature of allocated capacities. But it nevertheless 

shows that the set of prices can indeed drive the operator to 

offer the desired level of GoS guarantees even though he is not 

obligated to do so.  

V. CONCLUSIONS 

We studied a class of Service Overlay Network (SON) capacity 

allocation problem. By assuming the profit as primary 

performance metric that the SON network operator is 

interested in, we derived a set of Pareto efficient service charges 

for the SON network.  The service charges are derived from the 

set of multipliers *

ijv , which are well known metrics that 

quantify the prices of the GoS constraints: the cost objective in 

(2.2a) can be improved by *

ijv  units if the corresponding GoS 

constraint is relaxed by one unit. So, intuitively this is also the 

amount of reward the users of the OD pair (i,j) should bring to 

the network so as to enjoy the GoS. To apply the results to a real 

SON business, the operator of SON can design the network 

using formulation F2, and charge according to the prices in 

(3.3). This set of prices makes the solutions of F1 and F2 

coincide, which implies that the design the operator gets from 

F2 is a maximum profit design, but at the same time this design 

also gives the users a maximum utility.  In this way the operator 

effectively delivers a network that maximizes both his profit 

and also the user utility (thus creating a win-win scenario). The 

study in the article shows that the Lagrange multipliers are 

capable of providing important pricing information to both the 

operator and the users. This additional set of pricing 

information is almost free of charge. First, it is because that the 

Lagrange multipliers are frequently the “side-products” of 

various numerical methods for solving an optimization 

problem (i.e. F2). Second, even if the values of the multipliers 

are not explicitly obtained, they could be computed relatively 

easy by solving a set of linear equations at the optimality (given 

that certain regularity condition holds).    
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Figure 3. A simple SON network 


