
PARALLEL PARTICLE FILTERS FOR TRACKING IN WIRELESS SENSOR NETWORKS

Garrick Ing and Mark J. Coates

McGill University
Department of Electrical and Computer Engineering

3480 University St., Montreal, Quebec, Canada, H3A 2A7

ABSTRACT
An important application of wireless sensor networks is the
tracking of objects moving through a monitored area. In
some circumstances, a particle filter can perform substan-
tially better than other tracking algorithms. A simple im-
plementation is to transmit measurement data gathered at
distributed sensors to a fusion centre and apply a single par-
ticle filter. The filter estimates the current position and pre-
dicts future locations so that appropriate sensors can be ac-
tivated. This centralized approach can be energy-expensive
and prone to failure: uncompressed data must be transmit-
ted across multiple hops and there is a concentration of data
transmission around the fusion site, which constitutes a sin-
gle point of failure. This paper addresses these issues by
proposing a distributed particle filter implementation in
which parallel filters run at multiple nodes. These shared
filters are used to quantize vectors of measurements. Sim-
ulations indicate that the scheme significantly reduces the
energy expenditure of communication.

1. INTRODUCTION

One of the primary considerations when performing object
tracking using a sensor network is how to maintain estima-
tion accuracy whilst maximizing network lifetime (by min-
imizing energy consumption). One approach is to collect
the distributed measurements at a central site and apply a
tracking algorithm. Typical algorithms used when facing
non-linear dynamics and/or non-Gaussian observation noise
are the extended Kalman Filter (EKF) [1, 2], Gaussian sum
approximations [3] and grid-based filters [4]. Sequential
Monte Carlo methods, such as the particle filter (in all its
guises) [5], can perform substantially better than these other
tracking algorithms; the penalty is that they are generally
more computationally demanding [6].

A particle filter maintains a set of “particles” that are
simply candidate state values. The filter evaluates how well
individual particles correspond to the dynamic model and
set of observations, and forms a state estimate through an
appropriate weighted averaging of particle values (or per-
haps a maximization). Most tracking algorithms using par-

ticle filters in sensor networks adopt a centralized approach;
the particle filter resides on one sensor node (although this
leader node may change over time) [7]. This approach has
several disadvantages. Centralization introduces a single
point of failure and can lead to high, unevenly distributed
energy consumption because of the heavy communication
cost involved in transmitting the data to the fusion centre.

Distributed algorithms, such as the distributed particle
filter (DPF) algorithm proposed in [8], address the afore-
mentioned problems. These algorithms decentralize the com-
putation or communication so that a single fusion centre is
not required. The DPF works by maintaining a local particle
filter at selected nodes throughout the network. Each local
filter is used both to perform estimation and to implement
extensive compression of local measurements for transmis-
sion to other nodes. The DPF, while mitigating some of the
inherent problems of centralization, can also be computa-
tionally and communicationally expensive if the communi-
cation is not handled efficiently. This paper proposes two
improvements to this distributed particle filter algorithm to
reduce communication overhead. First, we describe an im-
proved quantization and encoding step that performs Huff-
man coding by constructing the tree from the particle filter’s
information. Second, we introduce a vectorization scheme
that reduces the fraction of communication energy wasted
through transmitting packet headers.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work, and Section 3 reviews the dis-
tributed particle filter of [8]. Section 4 describes the pro-
posed parallel distributed particle filter, and Section 5 an-
alyzes its performance. Section 6 provides concluding re-
marks.

2. RELATED WORK

Several approaches for performing decentralized object track-
ing in sensor networks have been proposed in the literature.
In [7], a “leader node” concept is used where one node is
selected to track the object at every time step using a par-
ticle filter. A hand-off of information to a new leader node
is therefore required whenever the leader changes. This in-



volves transmitting the particle filter in the form of raw par-
ticle values and weights or training and communicating a
parametric approximation. The authors of [9] adopt a sim-
ilar approach to the DPF of [8] but use an EM algorithm
to train a Gaussian mixture approximation to the particle
representation, and then exchange the mixture parameters.
In [10], each node has its own local particle filter. Using
a query-response system, neighbours exchange the entire
state trajectory of a small subset of the particles (those with
highest weight). Shin et al. [11] proposed a distributed
method whereby nodes use their local data to formulate an
estimate of the state and only transmit data when other users
of the system request them.

3. DISTRIBUTED PARTICLE FILTER

The distributed particle filter (DPF) algorithm of [8] main-
tains particle filters at a set of nodes dispersed throughout
the network. The sensor network architecture consists of
two different types of nodes. Class B nodes (or sensors),
when active, are responsible for taking measurements re-
lated to the object’s position. Class A nodes, which have
more processing power and energy, are responsible for run-
ning the particle filters to track the object. Each class A
node is associated with a set of “children” class B nodes
and collects data from these children, if any are active.

The unique aspect of the DPF is that the local particle
filter at each active class A node is used to efficiently en-
code the local measurement. In order to encode data at mea-
surement instant t + 1, the local particle filter at time t is
propagated (blindly) according to the dynamic model. Each
particle then has an expected measurement value for a given
sensor and these expected values are used to quantize the ac-
tual measurement using a Lloyd-Max algorithm. Straight-
forward labelling of the data bins is then used to encode the
local data for transmission to the other class A nodes. In
order for this quantization and encoding scheme to be suc-
cessful, it is crucial that all local particle filters match in
the sense that the set of particles are identical. This can be
achieved by initializing the particle filters using the same
random seed and ensuring that they all propagate based on
the same distributed, quantized measurements. Note that all
class A nodes must have some knowledge about the mea-
surement process at each sensor node, for example, sensor
position and calibration. This information can be commu-
nicated with the encoded data if necessary.

The distributed particle filter algorithm works in the fol-
lowing manner, which is repeated at every time step: 1. Se-
lected class B nodes (located close to the predicted posi-
tion of the object) collect measurements related to the ob-
ject’s state. 2. The measurements from each active class
B node are passed to its associated class A node. 3. The
particles on each active class A node are propagated using

the state dynamic model and a histogram of the expected
measurement values is constructed. 4. The measurements
are quantized using the Lloyd-Max algorithm and encoded
by bin labelling. The encoded values are transmitted to all
other class A nodes. 6. Each class A node decodes all the
encoded transmission to obtain the quantized measurement
values. 7. Each particle filter acts using these quantized
measurements to generate an estimate of the object’s state.

4. PARALLEL DISTRIBUTED PARTICLE FILTER

In this paper, we propose two modifications to the distrib-
uted particle filter to reduce communication costs: a new
quantization/encoding procedure step and a vectorization
step. We call our proposed algorithm the Parallel Distrib-
uted Particle Filter (PDPF).

4.1. Quantization and Encoding

Data transmitted through a sensor network is generally quan-
tized to some extent; the simplest form of quantization is
probably accomplished by dividing the entire measurement
space into small regions and transmitting the label of the re-
gion where the data lies. However, this scheme may still re-
quire a substantial number of bits to represent the data. The
DPF in [8] uses a Lloyd-Max algorithm trained according to
propagated particle filters to quantize the measurement and
achieves a much higher compression ratio, but the Lloyd-
Max algorithm is computationally expensive. Here we use
a much simpler quantization method but employ an efficient
encoding scheme to achieve similar compression.

The quantization process commences by blindly propa-
gating the particle filter from the previous time instant and
calculating the expected measurement for each propagated
particle. We then divide the range of the expected measure-
ments into equal bins and form a histogram. These steps are
illustrated in Figure 1. We construct a Huffman tree [12] us-
ing the histogram to develop the codebook used to encode
the data. This measurements can then be encoded by using
the Huffman tree codeword representing the bin associated
with the data. If the propagated particles are a good repre-
sentation of the state, then the measurement should lie in a
densely-populated bin and the codeword will consist of very
few bits. In the decoding step, the quantized measurement
values can be reconstructed by recreating the same Huff-
man tree because each class A node has a copy of the same
particle representation.

4.2. Vectorization

In most cases, during any time instant, only one or two
class A nodes collect measurements. Compression of these
measurements can result in the need to transmit only 10-15
bits. Since a packet header in most transmission systems



S

Fig. 1. Example of quantization/encoding a specific class A node.
(a) Original particles (circles) are propagated using the dynamic
model. Shaded circles are the propagated particles. (b) The ex-
pected measurements of the propagated particles are split into bins
of equal size. (c) A histogram of the number of particles in each
bin is constructed.

require at least 6 bytes, much of the communication energy
is wasted on transmitting overhead bits. In this section we
describe a procedure for delaying the broadcast of the en-
coded measurements until several time steps have elapsed.
We call this scheme vectorization.

As an example, suppose each class A node collects data
for five time steps before distributing its vector of com-
pressed values to the other nodes. During the intervening
time steps, only the active class A nodes will have up-to-
date local estimates and these will vary between nodes, as
they are formed using only local measurements. The quan-
tization of the data is performed using a blindly propagated
particle filter. When the five time instances have elapsed,
the vector of encoded measurements is shared with other
class A nodes and they run their local particle filter on the
global quantized data. At this point, a global estimate of the
state can be formed.

The scheme achieves a substantial communication sav-
ing by reducing the ratio of overhead bits to data bits. For
a given compression ratio, the accuracy of the global es-
timates diminishes because the particle filters used for en-
coding the latter measurements in the vector are propagated
farther into the future and become a less reliable indicator of
the expected values. If estimates are required at every time
step, then local estimates must be used – we use an average
of the estimates at the active class A nodes. The local es-
timates are less accurate than the global estimates because
they are formed from a subset of the measurements.

4.3. PDPF Algorithm

We consider the problem of estimating the current state of
an object using a Markovian state-space model that is (po-

tentially) non-linear and non-Gaussian. The unobserved state
{xt; t ∈ N} is modelled as a Markov process with initial
distribution p(x0) and a transition probability p(xt|xt−1).
The observations {yt; t ∈ N∗} are assumed to be condi-
tionally independent in time given the process xt and of
marginal distribution p(yt|xt). The system state and obser-
vations up to time t is denoted by x0:t , {x0, ..., xt} and
y1:t , {y1, ..., yt}, respectively. The measurements yt are
recorded by K sensors, and we use yk

t to denote the sub-
set of observations made by the k-th sensor. The main goal
is to estimate online the expected value of the current state
Ep(x0:t|y1:t)

[xt].
The parallel distributed particle filter algorithm is de-

tailed below.
1. Initialization, t = 0

• Initialize the particle filter of each sensor k = 1, ..., K
using the same random seed.

• For each sensor k = 1, ..., K

– For i = 1, ..., N particles, sample x(i)
0 ∼ p(x0).

• Set t = 1.

2. Quantization and encoding at the nodes.
For the length of the vector v = 1, ..., V :

(a) Quantization
• For each sensor k = 1, .., K

– For i = 1, .., N , sample x̃(i)
t ∼ p(xt|x(i)

0:t−1).
– Calculate expected values of measurements

g
(i)
t = E(y

(k)
t |x

(i)
t ).

– Create a histogram of the g
(i)
t values with h

equal bins encompassing the range of val-
ues [min(gt), max(gt)].

– Use the histogram to form Huffman tree
Hk

t and encode quantized measurements eyk
t .

(b) Local Estimation
• Form a local estimate of the object’s state using

a standard particle filter acting only on the local
measurements.

(c) Set t← t + 1.

3. Network Communication:

• For each k = {1, ..., K}, send the vectorized mea-
surements (eyk

t−V :t)
′ = {(eyk

t−V )′, ..., (eyk
t )′} to all

other K − 1 sensors.

4. Global Estimate:

• For t′ = t− V, ..., t

(a) For each active class A node k, create the Huff-
man tree Hk

t′ to reconstruct the quantized data
eyk

t−V :t.
(b) Using {eyk

t−V :t, k = 1, ..., K} as the set of mea-
surements obtained for time interval t − V : t,
apply a standard particle filtering algorithm to
generate the global state estimates.

5. Go to step 2.



5. SIMULATIONS

We conducted simulations to explore the performance of
the PDPF algorithm relative to a centralized particle filter.
The simulations used a sensor network of 16 class A nodes,
placed in a uniform 4 × 4 grid in a 128 × 128 metre plane.
There are 128 uniformly distributed class B sensors dis-
persed to take distance measurements. Each of these class
B nodes is associated with exactly one Class A node.

The dynamic system of the object’s movement uses a
jump-state Markov model, described by an initial distribu-
tion p(u0, θ0, x0) and update equations

ut ∼ p(ut|ut−1), (1)

θt = θt−1 + c(ut) + vt, (2)

xt = xt−1 + m[cos θt, sin θt], (3)

where ut ∈ {0, 1, 2} represents a discrete motion state of
the object (continuing straight, making a 0.1 radian left turn
or making a 0.1 radian right turn, respectively). c(ut) repre-
sents the angle of turn in radians. The angle of the motion is
represented by θt, which has a zero-mean Gaussian innova-
tion noise vt of variance 0.001. The object’s position is xt

and has a constant speed m = 0.5. The update probability
matrix for the discrete state is

p(ut|ut−1) =

 0.75 0.65 0.65
0.125 0.3 0.05
0.125 0.05 0.03


The observation equation for node v with position gv is

rv
t = max(‖xt − gv‖(1 + st), 0), (4)

where st is zero-mean Gaussian noise of variance σ2
s =

0.02. Note eight class B sensors are active at any given
time.

The simulations were conducted over S = 20 different
realizations of sensor field and object path. In each study,
the algorithm was applied with REP = 5 different random
seeds for initialization. We report results for the case of
N = 500 particles and Q = 8 quantization levels (bins).
More extensive experiments, as reported in [13], indicate
that these values provide a reasonable compromise between
tracking accuracy and compression.

5.1. Experimental Results

In order to evaluate the tracking accuracy of the proposed
algorithm in these two situations, we use the mean square
error (MSE). The MSE is defined as

MSE =
1
S

S∑
s=1

[
1

REP

REP∑
r=1

‖xt,s − x̂t,r,s‖2

]
(5)

1 3 5 7 9
0

0.5

1

1.5

Vector length

M
S

E

Global
Local
Centralized

Fig. 2. Average mean square error for the global and local PDPF,
and for the centralized particle filter for various vector lengths us-
ing 500 particles and 8 quantization bins.

where xt,s is the vector position of the object at time t and
x̂t,r,s represents the particle filter estimate.

The average MSE results of Figure 2 indicate that the
accuracy of the PDPF global estimates for vector lengths
up to 8 is very similar to that of the centralized particle fil-
ter and the distributed particle filter algorithm of [8] (i.e.,
vector length 1). This indicates that in the case where an es-
timate is not needed at every time step, vectorization can be
used without incurring a substantial penalty in tracking ac-
curacy. Of course, these results are specific to the reported
tracking scenario, and the feasible vector length (in this case
8) reduces when the innovation or measurement noise in-
crease. In the reported simulation, the active class B sen-
sors are only changed when communication is exchanged.
This means that measurements become more unreliable as
the vector length increases, because the object is likely to be
further away from the sensors. Figure 2 also shows the av-
erage MSE of the local estimates. In this simulation, these
values are only slightly larger than the global estimates, be-
cause there is often a substantial number of distance mea-
surements available to each class A node.

5.2. Communication and Computation

Here we compare the communication and computational
requirements of the parallel distributed particle filter with
those of a centralized scheme in which measurements are
quantized to 16 bit values. We observe in Figure 3 that
vectorization generates a substantial savings in the average
number of bits transmitted. This is because communication
between class A nodes occurs only once every period T .
With a period of T , there are b(T − 1) packet overhead bits
saved, where b is the number of bits per header.

In the centralized case, we assume the bulk of communi-
cation required in the network is from each individual class
A node to the central fusion node. If there are m active
class A node that transmit n quantized measurements bits,



1 3 5 7 9
0

50

100

150

200

250

300

Vector length

N
o.

 tr
an

sm
itt

ed
 b

its
 p

er
 ti

m
e 

sl
ot Centralized

PDFP

Fig. 3. Avg. number of bits sent in the network per time slot
using various vector lengths for 500 particles and 8 quantization
bins. The centralized scheme assumes 16-bit values are sent.

the communication cost is O(m(n + b)) per time step. In
the distributed case with quantization and vectorization, the
required number of transmitted bits is O(m(n + b/T )). As
T grows, the number of transmitted bits tends to O(mn).

The scheme of [9] shares at each time step the para-
meters of a Gaussian mixture approximation of the particle
set. This requires O(cm(ng + b)) bits, where c represents
the number of Gaussians in the mixture, and ng represents
the number of bits required to encode the mixture parame-
ters. Whether this approach involves a smaller communica-
tion overhead depends on whether state dimension is small
compared to data dimension (per time step) and whether the
Gaussian mixture approximation is reasonably efficient. In
our simulation scenario, the dimensions are comparable (8
measurements, 4 state components), so transmitting com-
pressed, encoded data is much more efficient. However, if
the data were images from a camera, then the Gaussian ap-
proach would undoubtedly be preferable.

The PDPF algorithm is inherently more computation-
ally expensive than the centralized approach because a par-
ticle filter must be maintained at multiple nodes. The main-
tenance of each of these particle filters also requires more
computation, because there is the extra quantization and en-
coding procedure. The particle filter is known to computa-
tionally cost O(N) if N particles are used. Blind particle
propagation in the encoding also costs O(N). Forming the
histogram and creating the Huffman tree can be performed
with a quicksort algorithm of complexity O(N log N). The
dominant computational cost in the PDPF is not the quan-
tization/encoding. In our implementation, particle propa-
gation only consumes 1

15 of the computation time of the
standard particle filter component. The encoding (decod-
ing) takes approximately 1

4 of the time of the particle filter.
The maintenance of the parallel particle filter at any class A
node thus requires between 1.25 - 1.5 times the computation
of a standard particle filter.

6. CONCLUSION

Centralized particle filtering in a sensor network suffers from
a single point of failure and unbalanced, large communica-
tion requirements. Previously proposed distributed particle
filters alleviate these problems but fail to consider the sub-
stantial overhead of packet header bits. In this paper, we
have proposed a vectorization approach that allows mul-
tiple nodes to run parallel particle filters and share mea-
surements extremely efficiently. Tracking accuracy is main-
tained and communication overhead dramatically reduced.
Further work is needed in the development of distributed
particle filtering architectures to address issues of unreliable
measurements, data association, and sensor selection.

7. REFERENCES

[1] A.H. Jazwinski, Stochastic processes and filtering theory,
Academic Press, New York, 1970.

[2] R. R. Brooks, P. Ramanathan, and A.M. Sayeed, “Distributed
target classification and tracking in sensor networks,” Proc.
IEEE, vol. 91, pp. 1163–1171, Aug. 2003.

[3] D. Alspach and H. Sorenson, “Nonlinear Bayesian estima-
tion using Gaussian sum approximations,” IEEE Trans. Au-
tomatic Control, vol. 17, pp. 439–448, Aug. 1972.

[4] F. Martinerie, “Data fusion and tracking using HMMs in
a distributed sensor network,” IEEE Trans. Aerospace and
Electronic Systems, vol. 33, pp. 11–28, Jan. 1997.

[5] A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte
Carlo Methods, Springer-Verlag, New York, 2001.

[6] M.S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A
tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking,” IEEE Trans. Sig. Processing, vol. 50, pp.
174–188, Feb. 2002.

[7] F. Zhao, J. Shin, and J. Reich, “Information-driven dynamic
sensor collaboration,” IEEE Signal Processing Magazine,
vol. 19, pp. 61–72, Mar. 2002.

[8] M.J. Coates, “Distributed particle filtering for sensor net-
works,” in Proc. IEEE/ACM Int. Symp. IPSN, Berkeley, CA,
Apr. 2004.

[9] X. Sheng and Y-H. Hu, “Distributed particle filter with GMM
approximation for multiple target localization and tracking
in wireless sensor network,” in Proc. IEEE/ACM Int. Symp.
IPSN, Los Angeles, CA, Apr. 2005.

[10] M. Rosencrantz, G. Gordon, and S. Thrun, “Decentralized
sensor fusion with distributed particle filters,” in Proc. UAI,
Acapulco, Mexico, Aug. 2003.

[11] J. Shin, N. Lee, S. Thrun, and L. Guibas, “Lazy inference
on object identities in wireless sensor networks,” in Proc.
IEEE/ACM Int. Symp. IPSN, Los Angeles, CA, Apr. 2005.

[12] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, In-
troduction to Algorithms, MIT Press, Cambridge, Mass., 2nd
edition, 2001.

[13] G. Ing and M.J. Coates, “Vectorized distributed particle fil-
tering,” Tech. Rep., Dept. Electrical and Computer Engineer-
ing, McGill University, Apr. 2005.


