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ABSTRACT

We study sensor-actuator networks, extensions of sensor net-

works that consist of nodes that both monitor and interact

with the environment. In particular, we focus on the eval-

uation of average causal effect within such networks. We

describe a distributed algorithm that enables individual ac-

tuator nodes to determine the probable consequences of lo-

cal action on the global environment and hence decide if

such action is conducive to achieving the aims of the net-

work. Our approach represents the relationship between ac-

tuation and sensor measurements using a causal graph, and

applies a distributed expectation-maximization algorithm to

estimate the average causal effect of actuation. We evaluate

the effectiveness of our approach through simulations that

examine the benefits of including side-information regard-

ing possible event outcomes.

1. INTRODUCTION

Sensor networks have been successfully deployed for pas-

sively monitoring environments [1, 2], but there has been

relatively little work in developing networks that interact

with the environment. Wireless sensor and actuator net-

works (WSANs) represent an important extension, allow-

ing nodes within the network to make autonomous decisions

and perform actions (actuation) in response to sensor mea-

surements and shared information. The potential applica-

tions of such WSANs are widespread, including agricultural

maintenance and localized delivery of medication.

Causal assessment is an important step in the develop-

ment of WSANs, enabling us to determine whether an actu-

ation has an impact upon the monitored system, and whether

it is positive or negative. The formulation of distributed

treatment plans in the medical or agricultural context relies

on an understanding of how the environment responds. We

concern ourselves primarily with the problem of estimat-

ing the causal effect on system response when the actuation

is effective (the treatment is delivered to the environment).

Our focus is on developing a distributed algorithm that re-

duces communication requirements but maintains inferen-

tial accuracy.

Section 2 of the paper details the estimation problem we

address and reviews the concept of average causal effect.

Section 3 describes a graphical model of the causal system

and a potential response formulation. Section 4 explains the

distributed procedure for estimating the average causal ef-

fect. Section 5 examines communication requirements of

the estimators, and Section 6 describes simulation perfor-

mance. Finally, Section 7 makes concluding remarks and

indicates future research directions.

2. PROBLEM STATEMENT

We consider a WSAN as depicted in Figure 1, where actu-

ation at a given node has a localized effect. We model the

system using the causal graph depicted in Figure 2. In this

model, there is a global distribution on latent causal fac-

tors; at each sensor, there is an independent realization of

these factors. For the j-th sensor, there is a binary vari-

able Zj , assumed known in our model, that indicates local

actuation. We let z ∈ {z0, z1} represent the value of Z,

where z1 indicates that actuation was performed, and z0 that

it was not. We interpret actuation as the application of some

“treatment” to the system. The unobserved binary event Dj

indicates reception of treatment, and Yj indicates the re-

sponse. The variables dj ∈ {d0, d1} and yj ∈ {y0, y1}
represent, respectively, the values assumed by Dj and Yj ,

with d1 indicating that treatment was received, and y1 in-

dicating a positive observed response. The values d0 and

y0 are the negations of their respective counterparts. The

observed local measurements, Xj and Wj , are modeled as

i.i.d., conditioned on Dj and Yj , respectively. We leave the

nature of these measurements, and the conditional probabil-

ity distributions that relate them to Dj and Yj unspecified,

but assume that these distributions are known (or modeled)

when our estimation techniques are applied. We denote by

Uj all characteristics that externally influence the values of

Dj and Yj . In general, Uj will comprise several random

variables, both discrete and continuous. These Uj are as-

13760-7803-8622-1/04/$20.00 ©2004 IEEE



sumed to be local realizations of variables described by a

global distribution g.

The graphical model depicted in Figure 1 represents in-

dependence assumptions about the joint probability distri-

bution p(z,d,y,w,x,u). It specifies that the actuation Z
does not directly affect the response Y , but only through the

reception of treatment D. The model also asserts that ac-

tuation does not depend on the latent factors that determine

treatment reception and system response.

Fig. 1. The model for the sensor-actuator network. Solid

squares represent actuation-capable nodes; circles represent

sensor nodes. Lines between nodes describe the localized

actuation model, i.e., actuation at a given node can only af-

fect measurements at the sensors to which it is connected.

Nodes are assumed to be capable of communicating only

with nodes in neighbouring grid squares.

We address the problem of estimating the causal effect

of the system. In particular, we focus on the average causal

effect, as defined by Holland [3], of treatment reception

upon response:

ACE(D → Y ) = Eu[p(y1|d1, u) − p(y1|d0, u)]. (1)

The average causal effect is the expected difference between

the probability of the response being positive when treat-

ment is received and when it is not received (where the ex-

pectation is over the latent causal factors). Denoting our

data across all sensors by X , our goal in this paper is to es-

timate ACE(D → Y ) by maximizing the likelihood func-

tion L(X|ACE(D → Y )). A simple modification of the

approach permits assessment of the indirect causal effect of

actuation upon response.

Related work and Contribution
The estimation of causal effect using Bayesian graphical

analysis techniques has been explored for many years [4–8].

In the context of clinical studies, the estimation of causal

effect and average causal effect has been examined in [3,

Yj

Dj

Zj

g

Uj

Xj Wj

Fig. 2. Graphical model for the variables affecting measure-

ment at an individual sensor node. g represents the global

distribution of the latent causal factors; Uj represents a lo-

cal realization of these factors; Zj is a binary local actu-

ation variable; Dj is a binary variable indicating whether

treatment was received; Yj is a binary variable indicating

positive or negative (null) response. The observed measure-

ments, Xj and Wj , depend only on the state variables Dj

and Yj respectively, according to a specified probability dis-

tribution.

9]. Graphical techniques and distributed EM algorithms

have been applied recently in sensor networks for differ-

ent estimation problems [10, 11]. In [12], we described

an expectation-maximization algorithm for estimating aver-

age causal effect that operated by forming an overlay tree-

topology network for aggregation. Therein we assumed that

the events Z, D and Y could be directly observed. The

major contribution of this paper is the identification of a

distributed EM algorithm for performing distributed causal

analysis across a sensor-actuator network that cannot di-

rectly observe the events D and Y .

3. POTENTIAL RESPONSE MODEL

Our estimation algorithm is based upon the observation in [6]

that the latent factors Uj can be replaced by a single discrete

and finite variable CRj , resulting in an equivalent causal

model for all manipulations of Z, D, and Y (and observa-

tions dependent upon them). The variables CR describe the

impact of latent factors on the mappings from Z → D and

D → Y ; this contrasts with the original U which describes

the impact on the actual values of D and Y . Such a variable

has been called a response variable [5]; its states correspond

to the potential response vectors in [4].

Since Z, D and Y are binary variables, each mapping

can be described using 4 states, meaning that the state vari-
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able CR has 16 values. We can use two four-valued vari-

ables, C and R, which describe the individual mappings

Z → D and D → Y , respectively. The value of CR is

then determined by the combination of these two values.

The variable C governs the mapping Z → D as follows.

d = FD(z, c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d0 if c = 0

d0 if c = 1 and z = z0

d1 if c = 1 and z = z1

d1 if c = 2 and z = z0

d0 if c = 2 and z = z1

d1 if c = 3

(2)

The variable R determines the mapping from treatment to

response.

y = FY (d, r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

y0 if r = 0

y0 if r = 1 and d = d0

y1 if r = 1 and d = d1

y1 if r = 2 and d = d0

y0 if r = 2 and d = d1

y1 if r = 3

(3)

Denoting the states of CR using the notation cr(s, t)
with 0 ≤ s, t ≤ 3, we can express the average causal effect

as:

ACE(D → Y ) =
∑

i

[p(cr(s, 1)) − p(cr(s, 2))]. (4)

This is equivalent to the difference, for recipients of the

treatment, between the probability of a positive effect and

that of a negative effect. Note that the global distribution g
is equivalent to p(cr).

4. ESTIMATION ALGORITHM

We assume that there are N sensors and each sensor j makes

a set of K measurements. We denote the i-th measurements

of the j-th sensor wij and xij ; these could be vectors and

either discrete-valued or continuous. The associated events

are dij and yij ; we assume that zij is known by the sensor-

actuator network. We estimate the average causal effect by

applying an expectation-maximization (EM) algorithm [13]

across the graphical model depicted in Figure 2. In this sec-

tion, we begin by describing a partially-distributed version

of the EM algorithm; we then describe an extension to a ver-

sion that is more extensively distributed. The EM algorithm

generates an estimate ĝ that (locally) maximizes the likeli-

hood function L(X|g). The estimate is used in equation 4

to determine ÂCE(D → Y ).

The EM algorithm commences with an initial estimate

g0. It is an iterative algorithm with each iteration consisting

of two steps: the expectation (E-) step and the maximization

(M-) step. The E-step of the algorithm uses conventional

message-passing techniques associated with Bayesian net-

works to determine the expected values of the state variables

d, y, and cr [13]. At the m-th iteration of the algorithm, the

distribution estimate is gm. The E-step in this case involves

the evaluation of the expected values of dij and yij and crij .

In fact, the critical step is the evaluation of crij :

vij(s, t) = gm(s, t)
∑
d,y

I(d, y|s, t, zij)p(xij |d)p(wij |y)

crm+1
ij (s, t) =

vij(s, t)∑
s,t vij(s, t)

(5)

where I(d, y|s, t, zij) is an indicator function that takes on

the value 1 if (zij , d, y) is possible under the state crij =
(s, t).

The maximization step at the m-th iteration involves the

determination of the global distribution gm+1 which maxi-

mizes the likelihood of observing the crm+1
ij across the N

sensor nodes. We model g as a multinomial distribution,

so this maximization takes the form of an averaging of the

expected crij values. To calculate this average, we need

to aggregate the crm+1
ij across the network (and divide by

the total number of measurements). The resultant gm+1 is

then distributed throughout the network. The algorithm is

deemed to have converged when the change between gm

and gm+1 is sufficiently small. In this version of the algo-

rithm, each calculation in the E-step is local to one of the

sensor nodes (no inter-node communication is necessary).

The M-step involves aggregation; this can be performed ef-

ficiently by constructing an overlay tree network. For this

reason, we will call the algorithm we have just described the

tree-based EM algorithm.

The rate of convergence of the algorithm can be im-

proved (and the amount of communication reduced) if one

employs a distributed EM algorithm, as described in [11].

In this algorithm, rather than constructing a tree, we con-

struct a cyclical path through the network. We choose an

initial estimate g0 as before. At iteration m + 1 of the al-

gorithm, one of the sensor nodes j receives an estimate gm

from the previous node in the path. It then performs the ex-

pectation as described above to calculate crm+1
ij for all of

its measurements i = 1, ...,K. Finally, the node calculates

gm+1 = gm +

∑K
i=1

[
crm+1

ij − crm
ij

]
NK

, (6)

and transmits this value on to the next sensor node in the

path. In this algorithm, each node performs a local EM-

step. The convergence properties and communication re-

quirements of the two algorithms are discussed in Section 5.
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5. COMMUNICATION REQUIREMENTS

In this section we briefly discuss the communication re-

quirements of various approaches to the estimation of ACE

in sensor-actuator networks. For concreteness, we focus on

the specific case of the grid depicted in Figure 1 and mea-

sure communication cost in bit-hops. We assume Manhat-

tan communication in the sense that a sensor can communi-

cate in one hop to one of its 4 neighbours to the north, south,

east or west. We consider a centralized estimation scheme

where all data is relayed to a sink node at the top-left corner

of the grid and compare its communication requirements to

those of the decentralized schemes we outlined in the previ-

ous section.

Consider a grid of N × N sensors with K bits of mea-

surements per sensor. In this case, the centralized algorithm

will require that N2 sensors transfer K bits to the sink node

over a mean distance of N − 1 hops. The communication

requirements for the network are thus O(KN 3). Suppose

that the tree-based EM algorithm takes Mt iterations to con-

verge, that the distributed EM algorithm takes Md iterations

to converge, and that representation of the cr data-structure

requires V bits. The tree-based EM algorithm requires that

aggregation is performed across the network. The aggre-

gation can be performed using a tree topology in which

each node performs a partial aggregation of the transmis-

sions from its children. At the source, the result is averaged

and distributed throughout the tree. This process requires

N2 communications of V bits and is repeated Mt times, so

the communication cost to the network is O(N 2MtV ). In

the distributed EM case, each sensor transmits its updated

calculation one hop to the next sensor in the cycle. Thus

N2 sensors transmit V bits for Md cycles, resulting in a

communication cost of O(N 2MdV ).
Compared to the centralized algorithm, both the tree-

based and distributed EM algorithms have the advantage

that communication is not concentrated anywhere in the sensor-

actuator network (in the centralized case there is much heav-

ier traffic near the sink node). In terms of average commu-

nication cost, there will be a reduction whenever MdV or

MtV compares favourably with NK. In constructing this

comparison, however, care must be taken to consider over-

head. There is a communication overhead in the construc-

tion of an overlay network for transmitting data to the sink,

for tree-based aggregation or for path-based communication

in the distributed EM algorithm. These costs are likely to

be comparable for the three schemes. However, the decen-

tralized schemes require transmission of O(N 2M) actual

packets, whereas in the centralized scheme, the number of

packets could range from O(N 2) to O(N3) depending on

packet size and K. There are overhead bits in each packet

header, so this potential reduction can have a substantial im-

pact.

6. SIMULATION RESULTS

In this section we describe the application of the algorithm

to a simulated data set. We base our simulation on a distri-

bution p(z, d, y) which is known to give rise to an identifi-

able ACE (= 0.55); we use the distribution described in [9]

and displayed in Table 1. In order to construct our data, we

draw [z, d, y] triples from this distribution for each sensor

measurement. The observed measurements xij and wij are

then drawn from Gaussian mixture distributions with com-

ponent means dependent on the state values dij and yij re-

spectively. In the example we discuss, these distributions

are:

p(x|d = 0) = 0.8N (0, 1) + 0.2N (0, 3)
p(x|d = 1) = 0.8N (2, 1) + 0.2N (2, 3)
p(w|y = 0) = 0.7N (0, 2) + 0.3N (0, 5)
p(w|y = 1) = 0.7N (4, 2) + 0.3N (4, 5) (7)

where N (µ, σ) indicates the normal distribution with mean

µ and variance σ2.

Table 1: Simulation population fractions (distribution)

resulting in an identifiable ACE = 0.55.

z d y p(z, d, y)
0 0 0 0.275

0 0 1 0.0

0 1 0 0.225

0 1 1 0.0

1 0 0 0.225

1 0 1 0.0

1 1 0 0.0

1 1 1 0.275

We considered a sensor-actuator network similar to that

depicted in Figure 1, in which there were 9 actuators and

9 sensors associated with each actuator (there was one sen-

sor collocated with the actuator). The simulation consisted

of ten events (actuations or non-actuations), assumed suf-

ficiently spaced in time so that system responses could be

modelled as independent of one another. Each sensor thus

recorded 10 independent measurements, for a total of 810

measurements across the entire network. The tree-based

EM and distributed EM algorithms were applied to this data

in 100 separate trials. In one experiment (labelled “no side”),

we considered the case where the algorithms considered all

[z, d, y] states to be viable. In a second experiment (la-

belled “side”) we examined the performance when the al-

gorithms were provided with side information specifying

exactly which [z, d, y] states were possible.

Table 2 summarizes the results of our simulations, pre-

senting empirical bias and standard error, and the mean con-

vergence rate over the 100 trials. We deemed that the algo-
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rithms had converged when the L1-distance between the es-

timate at iteration k and iteration k − 1 was less than 0.005.

We terminated the algorithms after 80 iterations if conver-

gence had not been achieved; this event was very rare in

simulations. Particularly when there is no side information,

the algorithms were observed to converge to different local

maxima (different initializations were used for the two algo-

rithms and the search behaviour is different), but in terms of

ACE estimation, the performance is reasonably consistent,

with a mean absolute discrepancy of 0.03 in ACE estimates

over the 100 trials. The distributed algorithm is seen to con-

verge faster on average than the tree-based algorithm; this

is expected because of its more aggressive updating proce-

dure. When there is no side information, the ACE estimates

are biased, because in the estimates positive weight is as-

signed to cr states that have no support in the generating

model. The weights of the cr states with support in the gen-

erating model are thus primarily underestimated; those in

cr(·, 2) are impacted more severely than cr(·, 3), resulting

in underestimated ACEs. The inclusion of the side informa-

tion results in a dramatic improvement in estimator perfor-

mance. Figure 3 depicts histograms of the ACE estimates

obtained with and without side information; inclusion elim-

inates almost all the bias and dramatically reduces variance.

Table 2: Simulation results for 100 trials; comparison

between empirical bias and standard deviation and mean

convergence rates of the two algorithms with and without

side information.

Method Bias Std Conv. (cycles)

Tree EM (no side) -0.0837 0.0642 62

Dist. EM (no side) -0.0633 0.0548 50.1

Tree EM (side) 0.0071 0.0290 31.2

Dist EM (side) 0.0050 0.0258 23.2
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Fig. 3. Estimation results from 100 trials of the simula-

tion of Section 6 using the distributed EM algorithm to esti-

mate causal effect. Top panel: No side information. Bottom

panel: Side information (the possible [Z,D,Y] states).

7. CONCLUSIONS

In agricultural and medical applications, the role of sensor

networks can develop beyond monitoring to active control

or localized treatment. This involves decision-making, an

arena in which causal analysis plays a vital role. We have

presented a distributed algorithm for a specific example of

causal analysis using a sensor network, but there remains

much to explore and develop.
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