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Abstract. This paper presents several decentralized learning algorithms

for on-line intra-domain routing of bandwidth guaranteed paths in MPLS

networks when there is no a-priori knowledge of traffic demand. The pre-

sented routing algorithms use only their locally observed events and up-

date their routing policy using learning schemes. The employed learning

algorithms are either learning automata or the multi-armed bandit algo-

rithms. We investigate the asymptotic behavior of the proposed routing

algorithms and prove the convergence of one of them to the user equi-

librium. Discrete event simulation results show the merit of these algo-

rithms in terms of increasing the network admissibility compared with

shortest path routing. We investigate the performance degradation due

to decentralized routing as opposed to centralized optimal routing poli-

cies in practical scenarios. The system optimal and the Nash bargaining

solutions are two centralized benchmarks used in this study. We pro-

vide nonlinear programming formulations of these problems along with

a distributed recursive approach to compute the solutions. An on-line

partially-decentralized control architecture is also proposed to achieve

the system optimal and the Nash bargaining solution performances. The

results of this study indicate that decentralized learning techniques pro-

vide efficient, stable and scalable approaches for routing the bandwidth

guaranteed paths.



1 Introduction

On-line routing of bandwidth guaranteed paths plays an important role in on-line
Quality of Service (QoS) provisioning. Other QoS metrics such as delay or loss
can be converted into effective bandwidth requirements [1] and QoS constraints
expressed as delay, loss or guaranteed bandwidth in Service Level Agreements
(SLAs) can be provided using bandwidth guaranteed path routing schemes. This
is especially motivated by the need of Internet Service Providers (ISPs) to pro-
vide on-line QoS requirements of rapidly expanding interactive and streaming
services such as e-science, video-on-demand and IPTV.

Multi-Protocol Label Switching (MPLS) is one of the frameworks where the
problem of on-line routing of bandwidth guaranteed paths is raised. MPLS al-
lows explicit source routing [2] where part or all the intermediate nodes along
a path are explicitly specified at the source node. This feature of MPLS can
efficiently improve the network resource utilization and enhance the admissibil-
ity performance. In this study, we address the problem of on-line intra-domain
bandwidth guaranteed path routing in MPLS networks.

An on-line routing algorithm should not need any a-priori knowledge about
the traffic demand; it should adapt to the smooth changes in the traffic pattern
and track the dynamics of the network. The on-line routing algorithm should
be efficient, stable and scalable. In order to be scalable, the algorithm needs
to be decentralized and impose low overhead to the network. This is one of
the main drawbacks of many of the previously proposed routing techniques;
many of these algorithms are either centralized or state dependent. In state
dependent routing, the state information is flooded through the network and
imposes flooding overhead. In this study, our focus is on employing decentralized
routing and learning the routing policy using the locally observed events.

The use of decentralized learning in network routing raises a number of crucial
issues including stability and asymptotic behavior. For most of the decentralized
routing schemes, there is no theoretical approach to predict the asymptotic be-
havior of these algorithms and discrete event simulation is the only evaluation
method that can be used. Another important issue with decentralized routing
is the performance degradation due to the selfish behavior of end-to-end users.
In decentralized routing, each user unilaterally tries to optimize its own per-
formance regardless of its system-wide impact. In network design and analysis,
it is of interest to investigate the performance gap between user optimal and
centralized system optimal solutions in realistic network scenarios.



In this paper, we devise learning based, decentralized, event dependent rout-
ing techniques for source routing of bandwidth guaranteed paths in MPLS net-
works. We consider the case where there is no a-priori information about the
traffic demand, but the topology of the network is known. The devised routing
schemes use only the acceptance/rejection feedbacks to their bandwidth request
attempts to update their routing policy. The performance of the algorithms are
evaluated in terms of the network admissibility, that is the probability that a
bandwidth request is admitted over the network. We analyze the asymptotic be-
havior of the proposed routing schemes and investigate their efficiency compared
to centralized optimal solutions in some practical scenarios.

1.1 Related Work and Contributions

A variety of centralized and decentralized algorithms have been reported for
routing in MPLS networks. Some of these algorithms assume all the point-to-
point traffic demands are known. While this is a valid assumption in network
design and analysis, in on-line routing this information is not always available.
Many other algorithms such as [1, 3–10] are State Dependent Routing (SDR)
methods. These algorithms update their routing policy based on the current
state of the network. In these algorithms, state information as measured by link
utilization, residual bandwidth or measured arrival rates is flooded through the
network either periodically or on demand. The flooding overhead raises stabil-
ity and scalability issues. Moreover, some of these algorithms such as [1] are
computationally expensive and can process only one request at a time.

Event Dependent Routing (EDR) methods on the other hand, are decen-
tralized routing schemes that update their routing policy based on the events
that they observe. EDR schemes use distributed decision making and select a
route for the current bandwidth request as a function of the outcome of their
previous attempts. The routing algorithms presented in [11, 12] are examples
of EDR schemes proposed for MPLS routing. Case studies reported in [11] for
AT&T’s network, indicate that network performance, as measured by end-to-end
delay and loss probability, is comparable for EDR and SDR, while EDR is more
scalable than SDR due to the state information flooding of SDR.

There are four major contributions of this paper. The first contribution is
the introduction of reinforcement learning based, decentralized, event dependent
routing techniques for routing in MPLS networks. The reinforcement learning
framework [13] considers an agent with a given set of actions that interacts



with a dynamic unknown environment and attempts to learn an optimal, or at
least reasonable, action selection policy via a sequence of trials. We consider the
reinforcement learning in the weak sense where the objective is not to solve an
optimization problem; rather the goal is to perform reasonably over the sequence
of trials. This is reminiscent of event dependent routing framework where the
path chosen for routing the current bandwidth request is selected using the
outcome of previous attempts and the outcomes depend on the network state
that is assumed to be unknown. The devised learning based routing schemes
have low computational complexity and track the dynamics of the network.

Our second contribution is the investigation of the asymptotic behavior of
the proposed routing algorithms under different stationary/non-stationary as-
sumptions for the network. We consider the user equilibrium where there is no
incentive for any single user to unilaterally change its routing policy [14] as the
natural result of routing rationally and prove the asymptotic convergence of one
of the devised routing schemes to the user equilibrium. This predictable behavior
is important in network design and analysis and is one of the strengths of our
devised routing techniques in comparison with alternate EDR schemes such as
the algorithm considered in [11]. For the EDR scheme of [11] and many other
EDR and SDR schemes, there is no theoretical approach to predict the perfor-
mance of the algorithm and discrete event simulation is the only method that
can be used.

The third contribution of this paper addresses the investigation of the gap
between the performance of the devised decentralized routing schemes and that
of the system optimal solution. We provide nonlinear programming formulations
of the user equilibrium and the system optimum problems of the proposed rout-
ing procedure and present a distributed recursion method for computing these
solutions. This numerical method is then used to examine the quality of the
user optimal solutions as opposed to system optimal routing policies in realistic
network environments.

System optimal policies can lead to unfair resource allocation among the
users where users with the same objective do not equally share the resources.
The axioms of bargaining and the Nash bargaining solution from game theory
provide the mathematical framework to address the optimality and fairness is-
sues. In the packet switching context, these concepts have been applied to the
network flow control problem in [15] and [16]. The notion of Nash bargaining is
used in [17] for inter-domain traffic engineering and in [18] for bandwidth man-



agement in multimedia applications. In this study, we apply these concepts to
intra-domain routing in MPLS networks and propose the Nash bargaining solu-
tion as an alternate Pareto optimal, fair, centralized benchmark routing policy.
We extend the proposed distributed recursion method to compute the Nash bar-
gaining solution and compare the performance of the user and system optimal
routing policies with this fair solution.

Our fourth contribution is an on-line routing architecture that obtains the
performance of the system optimal and the Nash bargaining solutions in a
partially-decentralized manner. This routing mechanism has practical appli-
cation in scenarios where the network capacities and traffic load are not well
matched, due to abnormal traffic conditions or network failures and decentral-
ized routing schemes can be inefficient. Centralized routing schemes are not
applicable for on-line routing in these scenarios due to their computational load
and scalability issues. We provide a technique for on-line implementation of this
architecture.

1.2 Structure of the Paper

This paper is organized as follows. The proposed routing algorithms are de-
scribed in Section 2. The asymptotic behaviors of these algorithms are studied
in Section 3. The nonlinear programming formulations of the user equilibrium,
system optimum and Nash bargaining problems and the numerical methods for
computing their solutions are presented in Section 4. Section 5 gives an on-line
routing architecture that converges to the system optimal and the Nash bar-
gaining solutions in a partially-decentralized manner. The simulation results are
discussed in Section 6. Summary and conclusions are given in Section 7.

2 Reinforcement Learning-based Load Shared Sequential

Routing

We consider the Load Shared Sequential Routing (LSSR) [19] algorithm for
routing the bandwidth guaranteed paths and propose the application of rein-
forcement learning schemes to update the load sharing factors on-line. We call
these algorithms Reinforcement Learning-based Load Shared Sequential Routing
(RL-based LSSR) schemes. In the following, we first describe the structure and
the functionality of the LSSR algorithm. We then review the learning schemes
used for updating the load sharing factors and discuss the properties that made



them suitable candidates for our application. This is an extension to the results
presented in [20].

2.1 Algorithm Description

Consider a general network topology with a set of alternate paths between each
origin-destination pair (o, d). The set of alternate paths between each (o, d) are
the K-shortest paths between these two nodes. The maximum number of consid-
ered alternate paths depends on the topology of the network and the maximum
number of paths that are tried sequentially in routing the bandwidth requests
as will be explained later. For each class ‘s’ traffic between each (o, d), a set of
Route-Trees (RTs) are built each with one or more alternate paths. The number
and the order of the alternate paths varies from one RT to the other. The LSSR
scheme assumes that for every (o, d, s), there is a load sharing vector αo,d,s such
that:

|Ko,d,s|∑
`=1

αo,d,s` = 1, and αo,d,s` ≥ 0, (1)

where ` = 1, 2, . . . , |Ko,d,s|; Ko,d,s is the set of RTs for class ‘s’ traffic from ‘o’
to ‘d’ and αo,d,s` is the load sharing factor of the `th RT for (o, d, s). A pictorial
representation of the LSSR model is provided in Fig. 1.
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Fig. 1. LSSR model with 3-shortest paths and 15 possible RTs.

Upon arrival of a new bandwidth request for (o, d, s), one of the RTs is
selected at random with αo,d,s` being the probability of selecting the `th RT
and the alternate paths of the selected RT are tried sequentially. If there is not
enough bandwidth available on at least one link of a path, a notification message



is sent to the origin node and the origin node forwards the request to the next
alternate path. In the MPLS context, the notification messages can be sent by
constraint-based routing using the label distribution protocol [21] or the traffic
engineering extensions of the resource reservation protocol [22]. This process
is repeated until the requested bandwidth is allocated on one of the alternate
paths of the selected RT or all the alternate paths of that RT have been tried
unsuccessfully. If all the paths have been tried unsuccessfully, the bandwidth
request is lost and is rejected from the network.

One of issues with alternate path routing is the bi-stable behavior that may
occur as a result of routing the connections over non-shortest paths [23,24]. We
employ the trunk reservation mechanism [23] to avoid this bi-stable behavior.
When the link load approaches its capacity, the trunk reservation mechanism
gives the priority to those connections that are routed over the shortest paths
by reserving the capacity that is above the trunk reservation threshold for these
connections. The thresholds are determined using Krupp’s square root rule [24].

The bandwidth constraint model used for allocating bandwidth to different
traffic classes is the fully isolated Maximum Allocation Model (MAM) [25]. MAM
gives an upper bound on the maximum bandwidth that can be reserved for
each traffic class on each link. In fully isolated MAM, the sum of bandwidth
constraints of different classes is less than or equal the link capacity. Using this
bandwidth constraint model in LSSR, one can assume that the routing modules
associated with different traffic classes of one (o, d) work in parallel and are
isolated from each other.

In the on-line load share update procedure that we propose, there is a learning
module associated with each (o, d, s) that uses the {0, 1} rejection/acceptance
feedback from the network and a learning technique to update the load shar-
ing factors. At each bandwidth request arrival, only the rejection/acceptance
feedback for the selected route-tree is revealed to the learning module and the
learning module uses only this information to update its load sharing vector.

Learning automata and multi-armed bandit are two classes of reinforcement
learning algorithms that naturally fit learning through trials and errors with
partial information [13]. These frameworks consider an agent that interacts with
a dynamic unknown environment and attempts to learn an optimal, or at least
reasonable, action selection policy via a sequence of trials. At each trial n, the
agent selects one of the possible actions a(n) = ai ∈ A. The agent then receives a
reward x(n) ∈ X which is a measure of the desirability of the selected action from



the environment. The agent uses this feedback signal to update its policy. This
is called learning with partial information (in contrast with the full information
case where at each trial the information about the rewards associated with all
the actions is revealed to the agent).

We have used Linear Reward-Inaction (LRI) and Linear Reward-εPenalty
(LRεP) updating schemes from learning automata [26] and the EXP3.P algo-
rithm from multi-armed bandit framework [27] for updating the load sharing
factors. These algorithms have appropriate asymptotic behaviors as will be ex-
plained later that make them suitable candidates for updating the routing policy
in the LSSR model. However, one should note that these are not the only pos-
sible candidates. The update procedure of LRI, LRεP and EXP3.P schemes are
reviewed in the following subsections.

Learning Automata Learning automata is one of the earliest frameworks of
learning via trial and error [26], [28]. Formally, a learning automaton is described
as a quadruple {A,P ,X, T} in which A is the set of actions with K = |A|, P
is the probability distribution over the set of actions, X is the set of possible
responses from the environment and T is the learning scheme:

P (n+ 1) = T (P (n), a(n), x(n)). (2)

Both the LRI and the LRεP schemes assume that X = {0, 1}, with x(n) = 1
if the selected action is rewarded and x(n) = 0 otherwise. The learning schemes
of these algorithms taken from [26] is given in Fig. 2.

In the LRI scheme, the parameter β, as presented in Fig. 2, is equal to zero
and the probabilities are updated only when the selected action is rewarded. The
LRI method is known to be ε-optimal if the reward stream is stationary [26].
That is, if the reward process (for each action) is stationary and if one of the
actions, ak, has the highest expected reward, ∀ 0 < ε < 1, by choosing the
parameter γ arbitrarily small, Pr{limn→∞ pk(n) = 1} > 1− ε.

The LRεP learning rule is derived from the above formula by choosing γ � β.
The LRεP rule is sub-optimal in comparison with the LRI algorithm in station-
ary environments. However, it avoids being locked in a state and is a better
choice for non-stationary environments. For the LRεP algorithm, a large value
of γ will result in a large variance in the steady state distribution.



Procedure: The LRεP algorithm
Parameters: γ ∈ (0, 1) and β � γ.

1. Initialize p1(1), . . . , pK(1) at random at an interior point of the distribution
set.

2. At each trial n = 1, . . .:
(a) Choose a(n) = ai randomly according to the distribution

p1(n), . . . , pK(n).
(b) Receive reward xi(n) ∈ {0, 1}.
(c) For j = 1, . . . ,K:

if xi(n) = 1,

pj(n+ 1) =

{
(1− γ) pj(n) ∀j 6= i

pj(n) + γ (1− pj(n)) j = i;

if xi(n) = 0,

pj(n+ 1) =

{
β

K−1 + (1− β) pj(n) ∀j 6= i

(1− β) pj(n) j = i.

Fig. 2. The LRεP algorithm.

The Multi-Armed Bandit Problem The multi-armed bandit literature also
considers the problem of learning the action-selection policy through a sequence
of trials and errors [29]. The variant of the multi-armed bandit problem we con-
sider is the so-called adversarial multi-armed bandit problem where the reward
process is non-stochastic and is assumed to be generated by Nature or even by
an adversary.

Exponential weighting-type algorithms are one class of the learning algo-
rithms proposed to solve the multi-armed bandit problem [30]. In these algo-
rithms, there is a weight associated with each action that is an exponential
function of the cumulative reward of that action and the probability of select-
ing an action is a function of its weight. We use the variant of the exponential
weighting methods, called EXP3.P, proposed to solve the problem when the re-
ward generation can be adversary [27]. The pseudo code of the algorithm taken
from [27] for a sequence of N trials is presented in Fig. 3.

In this algorithm, the parameters κ and γ control the amount of exploration
done by the algorithm initially (κ) and persistently (γ) over the sequence of N
trials.



Procedure: The EXP3.P algorithm
Parameters: κ > 0 and γ ∈ (0, 1].

1. Initialization: For i = 1, . . . ,K wi(1) = exp
(
κγ
3

√
N
K

)
.

2. At each stage n = 1, . . . , N :
(a) For i = 1, . . . ,K set pi(n) = (1− γ) wi(n)∑K

j=1
wj(n)

+ γ
K .

(b) Choose a(n) = ai randomly according to the distribution
p1(n), . . . , pK(n).

(c) Receive reward xi(n) ∈ [0, 1].
(d) For j = 1, . . . ,K set:

x̂j(n) =

{
xj(n)
pj(n) j = i

0 otherwise,

wj(n+ 1) =wj(n)× exp

(
γ

3K
(x̂j(n) +

κ

pj(n)
√
KN

)

)
.

Fig. 3. The EXP3.P algorithm.

The EXP3.P algorithm belongs to the family of the so-called “no-regret”
algorithms. Here, regret is defined as the difference between the cumulative re-
ward obtained from running the algorithm and that of the best over the hindsight
action. In no-regret algorithms, the average regret converges to zero as the num-
ber of trials goes to infinity; see [29] and references therein. For the EXP3.P
algorithm, by selecting the parameters appropriately, the no-regret property is
held even in the worst case non-stationary environments that the reward of an
action may depend on the past selected actions [27]. In the context of LSSR,
this means that for each (o, d, s), the EXP3.P-based LSSR guarantees an upper
bound on the difference between the number of admitted bandwidth requests of
that (o, d, s) over a sequence of N trials when running the algorithm and the
number of admitted requests if the best, over that period, RT was chosen con-
stantly. This upper bound is held no matter what the routing policies of other
pairs are.

The application of no-regret algorithms in network routing has been previ-
ously studied in the context of on-line shortest path routing; see, e.g., [31–33].
These studies assume a given weighted directed graph in which the edge weights
can arbitrarily change over time. The weight of an edge represents the cost de-
fined as delay or loss of that edge. No-regret algorithms give a routing policy with



asymptotic average cumulative cost not much larger than that of the minimum
weighted (shortest) path over the hindsight.

In comparison among three proposed routing schemes, the LRI-based LSSR
is a more suitable choice when the network is (approximately) stationary. When
this is not the case, the LRεP-based LSSR and the EXP3.P-based LSSR algo-
rithms are more suitable candidates. In the following subsections, the asymptotic
behaviors of these algorithms are studied. These results are important in the net-
work design and analysis as they predict the asymptotic behavior of the proposed
event dependent routing schemes.

3 Asymptotic Behavior

The asymptotic behaviors of the proposed RL-based LSSR algorithms are in-
vestigated with two underlying assumptions: when the state of the network and
consequently the route-tree admissibilities are (approximately) stationary and
when the stationarity assumption is not applicable.

For the LRI-based LSSR, under stationary assumption, the user equilibrium
is considered as the natural result of decentralized selfish routing. The concept of
user equilibrium, also known as Wardrop equilibrium, is commonly used in non-
cooperative strategic games [14]. Consider a non-cooperative game with a set of
users u ∈ U , each with a set of actions A(u). Let us assume that there is a utility
function Rui associated with each ai ∈ A(u), u ∈ U and that each user rationally
tries to maximize its own utility. In this setup, at the user equilibrium, there
is no incentive in terms of utility increase for an individual user to unilaterally
change its strategy and the user equilibrium can be viewed as the equilibrium
solution of the game where all the users are selfishly trying to maximize their
own utility.

In the LSSR model, each (o, d, s) is considered as a single user; the sets of
actions are the sets of RTs and the utility associated with each RT is the admissi-
bility of that RT. In this context, load sharing vectors α∗ are at user equilibrium
if and only if, for each (o, d, s), there is no incentive in terms of increasing the
admissibility, for changing the load sharing vector to α̃o,d,s 6= α∗o,d,s. In other
words, in the LSSR model, at the user equilibrium, the admissibility of the used
RTs (α∗o,d,sk > 0) are equal and these values are greater than or equal that of the
unused RTs (α∗o,d,sk = 0). For the LRI-based LSSR under stationary assump-
tion, we prove that the algorithm asymptotically converges to a user equilibrium:



Theorem 1. For every network employing the LRI-based LSSR, there exists a
0 < γ0 < 1 such that by choosing the learning parameter of the LRI algorithm
γ < γ0, the routing policy α(.) converges asymptotically to a user equilibrium
(α∗) for every feasible interior initial set of load sharing factors α(1):

∃0 < γ0 < 1 s.t. ∀α(1), if γ < γ0, lim
n→∞

α(n) = α∗.

Proof: In the following, we first present the proof of asymptotic convergence
of the LRI-based LSSR to the user equilibrium by showing that its trajectory
can be written as a set of Ordinary Differential Equations (ODEs). We then
show that the equilibrium solutions of these ODEs are asymptotically stable.

3.1 Asymptotic Convergence Proof

The asymptotic convergence of the LRI-based LSSR to the user equilibrium
is proved using the results of [34] and [35]. Consider a network where all the
users (u ∈ U), employ the LRI-based LSSR scheme for routing the bandwidth
requests over the set of actions A = ×u∈UA(u). Let θk be the set of probability
vectors of all the users over the time interval between the arrival of kth and
(k+1)th bandwidth requests to the network. Note that the kth and the (k+1)th

bandwidth requests do not necessarily belong to the same user. Let the learning
parameters of all the users be equal and set to γ. This system can be expressed
as a stochastic approximation of the form:

θγk+1 = θγk + γY γk , (3)

where Y γk depends on the reward used for updating the θk at the time of the kth

update. This system can also be represented as a finite state Markov Process
(MP) (ξγk , θ

γ
k) where ξγk is the state of the process at the time of kth update. This

process is stable for every stationary traffic distribution (for every θ), [23, 24],
with the state transition probabilities of Pr(ξ′, ξ) = Pr(ξk+1(θ) = ξ′|ξk(θ) = ξ).
Let G(ξ, θ) be defined as G(ξ, θ) = E (Y γk |ξ

γ
k = ξ, θγk = θ) and g(θ) be defined as:

g(θ) = lim
m→∞

1
m

m−1∑
k=0

E (G(ξk(θ), θ)) . (4)

Now, consider the interpolation process of:

πγ(t) = θγk for t ∈ [kγ, (k + 1) γ) . (5)



From the definitions of (3) and (4), for t = kγ, we have:

(πγ(t+ γ)− πγ(t)) /γ = Y γk , (6)

and the conditional expected behavior of Y γk with respect to the σ-algebra of
the MP up to the kth update, Fγk , is written as:

E
(
πγ(t+ γ)− πγ(t)

γ
|Fγk

)
= G(ξγk , π

γ(t)). (7)

Using the results of [36], every subsequence of πγ(.) as γ → 0 has a weakly
convergent subsequence; all weak limits are Lipschitz continuous a.s. and follow-
ing [35], any such limit satisfies the ODEs of the form:

dπ(t)
dt

= g[π(t)]. (8)

In a network employing the LRI-based LSSR, let λo,d,s be the class ‘s’ traffic
from origin ‘o’ to destination ‘d’ and let Ro,d,s` (t) represent the admissibility of
the class ‘s’ traffic between (o, d) via the `th RT when α = π(t). From the above
discussion and following the expected behavior of the LRI algorithm [37], the
trajectory of each load sharing factor αo,d,s` satisfies an ODE of the form:

dπo,d,s` (t)
dt

=
λo,d,s∑
λu,v,r

πo,d,s` (t)
(
Ro,d,s` (t)−

|Ko,d,s|∑
r=1

Ro,d,sr (t)πo,d,sr (t)
)
. (9)

The r.h.s. of this equality is Lipschitz continuous and has a unique solution for
every initial point. If it can be proved that the ODE has asymptotically stable
points, then the limit points of limt→∞ π(t) converge to the set of stable points.

Note that the equilibrium solutions of (9) satisfy the necessary and sufficient
conditions for being the user equilibrium. In other words, it is not possible for
an initial condition to converge to an equilibrium point of (9) that is not a user
equilibrium. Consequently, when the user equilibrium is unique, the LRI-based
LSSR asymptotically converges to that unique user equilibrium solution for ev-
ery initial starting point.



3.2 Asymptotic Stability Proof

The following proposition taken from [38] is used to obtain the sufficient condi-
tions for the asymptotic stability of the dynamics of (9):

Proposition 1. Suppose that there exists a continuously differentiable function
V : Θ 7→ R such that for each θ ∈ Θ,

∂V (θ)
∂θ(u, ai)

= gu,ai(θ), u ∈ U, ai ∈ A(u), (10)

where gu,ai
is defined as in (8). Then, d

dtV (π̂(t)) ≥ 0, with the equality iff π̂(t)
is an equilibrium solution of (8). The isolated local maxima of V are asymptot-
ically stable and θ ∈ Θ is a local maximum of V if for each u ∈ U , it satisfies
gu,ai

(θ) = maxaj∈A(u) gu,aj
(θ) when θ(u, ai) > 0.

In the LRI-based LSSR setup, let Bi,j,s be the admissibility of class ‘s’ traffic
on the link (i, j) and Mi,j,s be the class ‘s’ traffic arrival rate on the link (i, j),
where Bi,j,s = Bi,j,s(M i,j) and Mi,j,s = Mi,j,s(B,α). Moreover, let the admissi-
bility of each RT be a function of the admissibilities of the links along the paths
of that RT, Ro,d,sk = Ro,d,sk (B). We define the function Zue as:

Zue =
∑
o,d,s,k

(∫ αo,d,s
k

0

λo,d,sRo,d,sk (B)dα+
∫ αo,d,s

k

0

∑
(i,j)∈(o,d,s,k)

ηuei,j,s
∂Mi,j,s

∂αo,d,sk

dα
)
,

(11)

with ηue being ηue =
(
Ṁ b − Ḃ

−1

m

)−1

Ż
ue

b where Ż
ue

b = [ ∂Z
ue

∂Bi,j,s
], Ḃm = [ ∂Bi,j,s

∂Mi,j,r
]

and Ṁ b = [∂Mi,j,s

∂Bk,l,s
]. We then show that Zue satisfies the conditions of Proposi-

tion 1 and consequently is a Lyapunov function associated with ODEs of (9).

The partial derivative of Zue with respect to αo,d,sk is written as:

∂Zue

∂αo,d,sk

= λo,d,sRo,d,sk +
∑

(i,j)∈(o,d,s,k)

ηuei,j,s
∂Mi,j,s

∂αo,d,sk

+
∑
p,q

∂Bp,q,s

∂αo,d,sk

∂Zue

∂Bp,q,s
, (12)



where for each link (p, q), ∂Bp,q,s

∂αo,d,s
k

is written as:

∂Bp,q,s

∂αo,d,sk

=
∂Bp,q,s
∂Mp,q,s

∂Mp,q,s

∂αo,d,sk

+
∑
r,l

∂Mp,q,s

∂Br,l,s

∂Br,l,s

∂αo,d,sk

 . (13)

By defining Ḃα and Ṁα as Ḃα = [∂Bi,j,s

αu,v,r
`

] and Ṁα = [ ∂Mi,j,s

∂αu,v,r
`

], Equations (13)
are written in compact form as:

Ḃα =
(
Ḃ
−1

m − Ṁ b

)−1

Ṁα. (14)

Using the last set of equations, Equation (12) is equal to:

∂Zue

∂αo,d,sk

= λo,d,sRo,d,sk +
∑

(i,j)∈(o,d,s,k)

ηuei,j,s
∂Mi,j,s

∂αo,d,sk

−
∑

(i,j)∈(o,d,s,k)

ηuei,j,s
∂Mi,j,s

∂αo,d,sk

= λo,d,sRo,d,sk , (15)

which satisfies the conditions of Proposition 1. This means that Zue is a Lya-
punov function associated with ODEs of (9) and that for every initial point, the
equilibrium solution of (9) is asymptotically stable. �

For the EXP3.P-based LSSR, the no-regret property of the EXP3.P algo-
rithm is used to investigate the asymptotic behavior of the algorithm. User
equilibrium cannot be used as a benchmark for performance evaluation of no-
regret algorithms as these algorithms do not necessarily converge to user equi-
librium [29]. For these algorithms, the best over the sequence of trials, fixed
action selection policy is used as the benchmark. No-regret algorithms give an
upper bound on the difference between the average cumulative reward of the
algorithm and that of this benchmark scenario. This upper bound goes to zero
as the number of trials goes to infinity. Using this property, even when the sta-
tionary assumption for the network and consequently for the reward generation
process of the learning algorithm does not hold, for each (o, d, s), the EXP3.P-
based LSSR guarantees an upper bound on the difference between the number
of admitted bandwidth requests over a sequence of N trials and the number of
admitted requests if the best, over that period, RT was chosen constantly. The
per round of this difference goes to zero as the number of trials goes to infinity.



4 Derivation of Load Sharing Factors at User

Equilibrium, System Optimum and Nash Bargaining

Solutions

A fundamental problem arising from fully decentralized routing is that these
algorithms may lead to inefficient use of network resources. In the network de-
sign and analysis, the performance of decentralized routing schemes is compared
with centralized optimal routing policies. The most commonly used centralized
optimal policy, is the system optimal policy in which the sum of the utilities is
maximized over the network. The Price Of Anarchy (POA) concept, as presented
in [39], quantifies the degradation of the network performance due to the absence
of a centralized routing policy. The POA is defined as the maximum ratio of the
system optimal solution to the worst user equilibrium where the maximization is
carried out over all the instances of the network topologies, traffic demands and
utility functions. From a practical point of view, the POA is by definition pes-
simistic, as it compares the worst case performance of the potentially non unique
user equilibrium, associated with decentralized control, with the system optimal
solution. However, the practical scenarios are not necessarily the worst case sce-
narios and it is of interest to investigate the gap between the user equilibrium
and the system optimal solutions in these cases.

The system optimal policy is the most efficient solution in terms of overall
performance, but it can lead to unfair resource allocation among the users. In
the system optimal solution, users with the same objective do not necessarily
equally share the resources. The Nash bargaining solution is used as an alternate
fair, Pareto optimal benchmark and the performance of the user equilibrium is
also compared with this fair, efficient solution.

In the following subsections, we give the nonlinear programming formulations
of the user equilibrium, system optimum and Nash bargaining problems for the
LSSR model and present numerical methods for computing the solutions of these
problems. These numerical methods are then used to evaluate the degradation
of the performance due to decentralized routing as opposed to the centralized
optimal solutions in some practical scenarios. The following subsections extend
the results presented in [40].



4.1 User Equilibrium (UE)

In the context of the LSSR with Ro,d,s` being the admissibility of the `th RT of
(o, d, s) when the load sharing vectors are equal to α∗, α∗ is a user equilibrium
solution if and only if, for every (o, d, s), given the set of other load sharing
vectors,

|Ko,d,s|∑
`=1

α̃o,d,s` Ro,d,s` ≤
|Ko,d,s|∑
`=1

α∗o,d,s` Ro,d,s` . (16)

In other words, at the user equilibrium, the admissibility of the used RTs,
(α∗o,d,sk > 0), are equal and these values are greater than or equal that of the
unused RTs.

4.2 System Optimization (SYS)

In the system optimal solution, the load sharing factors are chosen such that the
overall network utility is maximized. The system optimization problem has the
following form:

max
α

Zsys(α) =
∑
o,d,s,k

λo,d,sαo,d,sk Ro,d,sk (17)

subject to
|Ko,d,s|∑
k=1

αo,d,sk = 1

αo,d,sk ≥ 0.

Intuitively, the set of load sharing vectors α∗ is a local optimal solution of the
system optimization problem if for any (o, d, s), the marginal gain of decreasing
the load sharing factor of any RT is at most the marginal cost of increasing the
load sharing factor of any other RT of that (o, d, s). In mathematical form, in the
local optimal solution, for each (o, d, s), the partial derivatives of the objective
function with respect to load sharing factors of the used RTs (α∗o,d,sk > 0) are
equal and these values are greater than or equal to the partial derivatives of
the objective function with respect to load sharing factors of the unused RTs,
(α∗o,d,sk = 0).



4.3 Nash Bargaining (NB)

In the Nash bargaining problem, the objective of the users is to improve their
performance through cooperation and to have a performance at least as good as
a given disagreement outcome where there is no cooperation among the users.
In the Nash bargaining solution, no single user can increase its utility without
adversely affecting any other user and the users with the same objective equally
share the network resources. The Nash bargaining solution is the only solution
that satisfies the four axioms of bargaining: Pareto efficiency, symmetry, inde-
pendence of affine transformation and independence of irrelevant alternatives.
For more detailed information on the axioms of bargaining, refer to [41].

The Nash bargaining solution solves an optimization problem with the objec-
tive function being equal to the product of surplus with respect to disagreement
outcome of the utility functions of all the users [41]. In the context of the LSSR,
when the disagreement outcomes of all the users are set to zero, the Nash bar-
gaining solution solves the following optimization problem:

max
α

Znb(α) =
∏
o,d,s

λo,d,s

|Ko,d,s|∑
k=1

αo,d,sk Ro,d,sk

 (18)

subject to
|Ko,d,s|∑
k=1

αo,d,sk = 1

αo,d,sk ≥ 0.

Because of the monotonicity of the log function, the solution of the above opti-
mization problem also solves an alternate optimization problem where the ob-
jective function is replaced with:

Z̃nb(α) =
∑
o,d,s

log
(
λo,d,s

|Ko,d,s|∑
k=1

αo,d,sk Ro,d,sk

)
. (19)

As this alternate objective function simplifies the formulations, it will be used
throughout the rest of the paper.

Here again, at the local optimal solution, for each (o, d, s), the partial deriva-
tive of Z̃nb with respect to load sharing factors of the used RTs (α∗o,d,sk > 0)



are equal and these values are greater than or equal that of the unused RTs,
(α∗o,d,sk = 0).

4.4 Recursive Solution Algorithm

We use the ODEs associated with the expected behavior of the LRI-based LSSR
algorithm to solve the three above-mentioned problems. In our proposed ap-
proach, these problems are solved by first initializing the load sharing factors
with an interior point of the distribution set. The load sharing factors are then
updated iteratively using the updating scheme of:

αo,d,sk (n+ 1) = αo,d,sk (n)
[
1 + γ

(
so,d,sk (n)−

|Ko,d,s|∑
r=1

so,d,sr (n)αo,d,sr (n)
)]
, (20)

with,

so,d,sk (n) =


λo,d,s∑
λu,v,r

(
co,d,s1

∂Z(n)

∂αo,d,s
k

+ co,d,s2

)
SYS & NB

λo,d,s∑
λu,v,r

Ro,d,sk (n) UE,

where 0 < γ < 1 is the learning parameter and depending on the problem to be
solved, Z(n) is replaced by Zsys(n) or Z̃nb(n). The constants co,d,s1 and co,d,s2 are
chosen such that 0 ≤ so,d,sk ≤ 1, ∀k ∈ {1, . . . , |Ko,d,s|}. This iterative process
is repeated until |αo,d,sk (n+ 1)− αo,d,sk (n)| is sufficiently small.

For the system optimization and the Nash bargaining problems, in order to
calculate the values of so,d,sk terms in each iteration, the partial derivatives of
the objective function with respect to load sharing factors need to be calculated.
Theses values can be calculated as follows:

System Optimization For the system optimization problem, at each iteration,
the values of the partial derivatives of Zsys(n) with respect to load sharing
factors, αo,d,sk , are obtained by considering two sets of auxiliary variables of link
admissibilities, B = [Bi,j,s] and link arrival rates, M = [Mi,j,s] with Bi,j,s =
Bi,j,s(M i,j) and Mi,j,s = Mi,j,s(B,α). Here again, we assume that the route-
tree admissibilities are functions of link admissibilities, Ro,d,sk = Ro,d,sk (B). We



then have:

∂Zsys

∂αo,d,sk

= λo,d,sRo,d,sk +
∑
p,q

∂Bp,q,s

∂αo,d,sk

∂Zsys

∂Bp,q,s
, (21)

where for each link (p, q), ∂Bp,q,s

∂αo,d,s
k

is written as:

∂Bp,q,s

∂αo,d,sk

=
∂Bp,q,s
∂Mp,q,s

∂Mp,q,s

∂αo,d,sk

+
∑
k,l

∂Mp,q,s

∂Bk,l,s

∂Bk,l,s

∂αo,d,sk

 . (22)

Using the same procedure as in the previous section, the set of Equations (22)
can be written in a compact form as:

Ḃα =
(
Ḃ
−1

m − Ṁ b

)−1

Ṁα, (23)

where Ḃm = [ ∂Bi,j,s

∂Mi,j,r
], Ṁ b = [∂Mi,j,s

∂Bk,l,s
] and Ṁα = [∂Mi,j,s

∂αu,v,s
`

]. Let ηsys be defined

as ηsys =
(
Ḃ
−1

m − Ṁ b

)−1

Ż
sys

b , where Ż
sys

b = [ ∂Z
sys

∂Bi,j,s
]. Equations (21) will be

equivalent to:

∂Zsys

∂αo,d,sk

= λo,d,sRo,d,sk +
∑

(i,j)∈(o,d,s,k)

ηsysi,j,s

∂Mi,j,s

∂αo,d,sk

, (24)

where, ηsys =
(
Ḃ
−1

m − Ṁ b

)−1

Ż
sys

b , Ż
sys

b = [ ∂Z
sys

∂Bi,j,s
]. In order to calculate the

values of the partial derivatives of the objective functions with respect to each
αo,d,sk from (24), the values of link arrival rates, link admissibilities, their partial
derivatives and the route-tree admissibilities need to be calculated. We adopt
the model reported in [42], which approximates the performance of alternate
path routing in arbitrary network topologies, multiple traffic classes and class
dependent access via trunk reservation to calculate the link arrival rates, their
partial derivatives and the Ro,d,sk terms. In this method, given the link admis-
sibilities, B = [Bi,j,s], the admissibility of each route-tree Ro,d,sk with |Ko,d,s

k |
alternate paths is written as the sum of |Ko,d,s

k | independent event probabilities.
The rth probability is the probability that the rth path is admissible while the
first r−1 paths are not admissible. Each of these probabilities is calculated using
the conditional probability of the first r − 1 paths not being admissible given
that the rth path is admissible. These conditional probabilities are calculated
from the binomial moments using the exclusion-inclusion principle.



Given the link arrival rates, the Bean-Gibbens-Zachary method [43] is used
to derive the admissibility of each traffic class ‘s’ on each link (i, j), Bi,j,s =
Bi,j,s(mi,j). The fixed point equations of B → M , M → B are solved in an
iterative manner to obtain consistent link flows and admissibilities.

Nash Bargaining Using a similar approach, for the Nash bargaining problem,
the partial derivative of Z̃nb with respect to each αo,d,sk is written as:

∂Z̃nb

∂αo,d,sk

=
Ro,d,sk∑

r α
o,d,s
r Ro,d,sr

+
∑
p,q

∂Bp,q,s

∂αo,d,sk

∂Z̃nb

∂Bp,q,s
, (25)

and as a result, by defining ηnb as ηnb =
(
Ḃ
−1

m − Ṁ b

)−1 ˙̃
Z
nb

b , with ˙̃
Z
nb

b =

[ ∂Z̃
nb

∂Bi,j,s
], Equation (25) is equivalent to:

∂Z̃nb

∂αo,d,sk

=
Ro,d,sk∑

r α
o,d,s
r Ro,d,sr

+
∑

(i,j)∈(o,d,s,k)

ηnbi,j,s
∂Mi,j,s

∂αo,d,sk

. (26)

The same fixed point equations as in the system optimization problem can be
employed to calculate the values of ηnb terms and the values of partial derivatives
of (26).

User Equilibrium For the user equilibrium case, the expected reward of each
RT used in the recursion formula of (20) is equal to the admissibility of that RT.
Here again, the model of [42] as explained above can be used to calculate the
route-tree admissibilities.

The proposed method for computing the user equilibrium, the system local
optimal and the Nash bargaining solutions is summarized in Fig. 4.

In choosing the learning parameter γ, there is trade off between the con-
vergence speed of the algorithm and the amplitude of fluctuations around the
equilibrium; the smaller the learning parameter, the slower the convergence speed
and the smoother the convergence curve appears. By increasing the learning pa-
rameter, the algorithm converges more quickly to the equilibrium solution in the
first iterations, but continues by fluctuating around the equilibrium solution with
a larger amplitude. The learning parameter can also be time dependent, with
its value being large at first to speed up the convergence and reduced near the
equilibrium solution to avoid or reduce oscillations about the equilibrium value.



Procedure: Recursive solution approach

Initialize the load sharing factors α(0) at an interior point of the distribution
set at random.
repeat

a) Calculate the so,d,si (n) terms using

so,d,si (n) =
λo,d,s∑
λu,v,r

(
co,d,s1 wo,d,si + co,d,s2

)
,

where,

wo,d,sk =



Ro,d,sk +
∑

(i,j)∈(o,d,s,k)

ηsysi,j,s
1

λo,d,s

∂Mi,j,s

∂αo,d,s
k

SYS

Ro,d,s
k∑

r

αo,d,s
r Ro,d,s

r

+
∑

(i,j)∈(o,d,s,k)

ηnbi,j,s
∂Mi,j,s

∂αo,d,s
k

NB

Ro,d,sk UE

b) Update the load sharing factors using

αo,d,si (n+ 1) = αo,d,si (n)
[
1 + γ

(
si(n)−

|Ko,d,s|∑
r=1

sr(n)αo,d,sr (n)
)]
.

until |αo,d,si (n+ 1)− αo,d,si (n)| < ε, ∀(o, d, s, i).

Fig. 4. Proposed recursive solution approach.

The selection of the optimal time dependent learning parameter is an optimal
dynamic control problem outside the scope of our present research.

4.5 Asymptotic Convergence of the Recursive Solution Approach

The following theorem guarantees the asymptotic convergence of the distributed
method of Fig. 4 to the locally optimal solution of the corresponding optimiza-
tion problem.

Theorem 2. For every initial point, the recursive algorithm presented in Fig. 4
converges asymptotically to the locally optimal solution of the related optimiza-
tion problem.



Proof: Using a similar argument to the proof of Theorem 1, by considering
the interpolation of πo,d,sk (t) = αo,d,sk (n) for t ∈ [nγ, (n + 1)γ), the recursive
formula of (20) is written as:

dπo,d,sk (t)
dt

= πo,d,sk (t)
(
so,d,sk (t)−

|Ko,d,s|∑
r=1

so,d,sr (t)πo,d,sr (t)
)
. (27)

The r.h.s. of these equations are Lipschitz continuous and have a unique so-
lution for every starting point. The asymptotic stability of these solutions are
proved following a similar approach as the proof of Theorem 1. We consider
Zue, Zsys, Znb as defined in Equations (11), (17) and (19) as potential Lya-
punov functions and show that they satisfy the conditions of Proposition 1. From
Proposition 1, we conclude that the solutions computed from the algorithm of
Fig. 4 are asymptotically stable. �

5 An On-line Approach to System Optimal and Nash

Bargaining Solutions

In this section we propose an on-line partially-decentralized mechanism to achieve
the system optimal and the Nash bargaining solution performances. This mech-
anism has practical importance in scenarios where there is a considerable gap
between the performances of decentralized routing schemes and centralized opti-
mal solutions. Decentralized routing schemes are not efficient in these scenarios
and centralized numerical methods are not applicable to on-line routing due to
their computational load. The architecture we propose is capable of generating
and maintaining a performance comparable to the one expected by the central-
ized numerical method with a reduced on-line computational load.

The proposed mechanism employs the LRI-based LSSR algorithm. In a sta-
tionary environment, when decentralized routing modules use their local obser-
vations of rejection/acceptance of their bandwidth requests to update their load
sharing factors, we proved that the LRI-based LSSR converges to the user equi-
librium solution where the admissibilities of the used RTs are equal and these
values are greater than or equal that of the unused RTs. On the other hand,
following the results of the previous section, at the system optimal and the Nash
bargaining solutions, for each (o, d, s), the so,d,sk terms, as defined in Fig. 4, of
those RTs with load sharing factor greater than zero, are equal and have val-



ues greater than or equal those of the unused RTs. Combining the properties
of the LRI-based LSSR and those of the system optimal and the Nash bargain-
ing solutions, if the probability of observing a reward by a learning module in
the LRI-based LSSR is changed from Ro,d,sk to so,d,sk of the system optimiza-
tion or the Nash bargaining problem, the LRI-based LSSR will asymptotically
converge to the related optimal solution. The probability of observing a reward
at a learning module can be changed from Ro,d,sk to so,d,sk , using the following
formulation:

so,d,sk = Pr(x = 1)

= Pr(x = 1|x = 0)× Pr(x = 0) + Pr(x = 1|x = 1)× Pr(x = 1), (28)

with,

Pr(x = 1|x = 0) =

0 Ro,d,sk ≥ so,d,sk

so,d,s
k
−Ro,d,s

k

1−Ro,d,s
k

Ro,d,sk < so,d,sk ,

P r(x = 1|x = 1) =


so,d,s

k

Ro,d,s
k

Ro,d,sk ≥ so,d,sk

1 Ro,d,sk < so,d,sk ,

where x is the reward received from the network with x = 1 if the bandwidth
request is accepted and x = 0 if it is rejected and x is the reward that is used
for updating the load sharing factors.

This leads to a partially-decentralized routing architecture using the LRI-
based LSSR model where one centralized processor is interconnected to every
learning module. In this architecture, on a regular basis, the centralized processor
updates its knowledge about the measured traffic rates between different nodes,
recalculates the reward modification probabilities and sends them to the learn-
ing modules. The learning modules use the rejected/accepted signals received
from the network, adjust the observed rewards using the reward modification
probabilities and update their load sharing factors accordingly. The calculation
of the reward modification probabilities is done in parallel to the operation of
the decentralized learning modules. The interval between two updates of reward
modification probabilities is chosen considering the trade off between reducing
the computational load by increasing the interval and the accuracy of the ob-
tained results. A pictorial representation of this architecture is given in Fig. 5.
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Fig. 5. An on-line partially-decentralized approach to the system local optimal
and the Nash bargaining solutions using the LRI-based LSSR. Centralized meth-
ods of deriving the optimal routing policies are not applicable to on-line routing
due to their computational load.

6 Simulation Results

The performance and the quality of the proposed routing algorithms have been
investigated in three steps. In the first step, discrete event simulation has been
employed to investigate the asymptotic and transient performances of the RL-
based LSSR schemes. We show through discrete event simulation that the perfor-
mances of the RL-based LSSR algorithms are comparable to other existing event
dependent routing schemes in well engineered networks, i.e. networks where traf-
fic flows and network capacities are “well matched”. While for most of the event
dependent and also state dependent routing algorithms, there is no theoretical
performance prediction approach, the strength of the RL-based LSSR schemes
is in their guaranteed asymptotic behavior as was explained in Section 3. For
the performance comparison in transient phases, discrete event simulations have
been carried out for scenarios where sudden changes such as link or node failure
or abrupt changes in traffic pattern have happened in the network.

In the next step, the numerical algorithm of Fig. 4 has been used to investi-
gate the performance gap between the user equilibrium and the system optimal
and the Nash bargaining solutions in some practical scenarios. We study the
efficiency of decentralized routing schemes in practical scenarios with well engi-
neered networks; the worst case scenarios are not of interest in this section.

The last step illustrates the potential inefficiency in terms of resulting net-
work admissibility of decentralized routing schemes when the network capaci-



ties and traffic demands are not well matched. These situations can happen in
practice due to abnormal traffic demands or as a result of link or node fail-
ure. Simulation results of the partially-decentralized routing architecture show
the merit in terms of improved admissibility performance of this architecture in
these scenarios.

The following subsections summarize a description of three alternate path
selection rules used for performance comparison and the three step investigation
results.

6.1 Considered Path Selection Rules

Shortest Path First (SPF), Success-To-the-Top (STT) [11] and Repeated Load
Sharing (RLS) [12] are the path selection rules used in this study for the per-
formance comparison. SPF is not a QoS routing algorithm. It is chosen as a
benchmark to verify how the RL-based LSSR algorithms can improve the QoS
provisioning in comparison with the case where no QoS routing scheme is em-
ployed. STT is an event dependent routing algorithm successfully used in prac-
tice in AT&T networks [11] and RLS is an alternate recently proposed event
dependent routing scheme [12]. One should note that the state dependent rout-
ing schemes that use the knowledge about the state of the network and/or the
traffic demand such as the algorithms of [1, 3–9] are from a different setup and
cannot be used as benchmark for the RL-based LSSR schemes. The path selec-
tion procedures of SPF, STT and RLS algorithms are reviewed in the following
subsections.

Shortest Path First SPF is the off-line routing algorithm commonly used in
IP networks. In SPF, the traffic of each (o, d, s) is routed along the shortest path
between the two nodes. Different variants of the SPF algorithm use different
distance functions such as the number of hops, the length of the links or the
distance between two adjacent nodes being inversely proportional to the capacity
of the link connecting these two nodes. In this study, we have used the SPF
algorithm with the number of hops distance function.

Success-To-the-Top STT is a decentralized on-line routing method with a
random updating scheme [11]. In this algorithm, the bandwidth request of an
(o, d, s) is first sent through the primary path. When there is a direct link between
two nodes, the primary path would be the direct path. If the request is blocked on



this path, it is sent through the last successful secondary path. If the bandwidth
request is blocked on both the primary and the last successful secondary, another
alternate path is selected at random and the request is forwarded through this
path. The algorithm allows a maximum of N crank backs. If the request is
accepted on one of the alternate paths, that path is labeled as the last successful
path to be used in routing the next bandwidth request of this (o, d, s).

To the best of our knowledge, there is no theoretical approach for evaluating
the performance of STT.

Repeated Load Sharing In the routing algorithm proposed in [12], for each
(o, d, s), there is a probability distribution associated with the set of alternate
paths. Upon arrival of a new bandwidth request, one of the alternate paths is
selected at random using this probability distribution and the bandwidth request
is sent along this path. If there is not enough bandwidth on at least one of the
links of the selected path, a notification message is sent back to the source
node. The source node then excludes the paths already tried, renormalizes the
probability of selecting remaining alternate paths such that they sum to ‘1’ and
selects another alternate path at random using this probability distribution. If
the bandwidth request is accepted on one of the alternate paths, the probability
of selecting this path is increased appropriately. In this study, we have used
a modified version of this algorithm where the first path tried for routing the
bandwidth request of each (o, d, s) is always the shortest path between the two
nodes.

6.2 Discrete Event Simulation Results

Simulation studies have been carried out for two network topologies (14-node
NSFnet [44] and 26-node AT&T [45]) and gravity model based traffic demands [46]
where the traffic demand between each (o, d, s) is proportional to the product of
two regions’ population. These traffic matrices are presented in the Appendix.
Forecasting errors are modeled with randomly generated variables with normal
distribution and the standard deviation of 5% of the mean of the traffic de-
mand. The traffic matrices used for admissibility performance comparison are
the gravity model based traffic demands with a randomly generated forecasting
error matrix. In order to have a fair comparison of different path selection pro-
cedures, the same set of alternate paths have been used for LSSR, STT and RLS
with each RT in LSSR having four alternate paths and the maximum number of



crank backs for STT and the maximum number of alternate paths tried in RLS
being equal to four. For LSSR, only 6 RTs have been considered. As the fully
isolated maximum allocation model (MAM) is used for bandwidth allocation
to different classes, without loss of generality, only one class of traffic has been
considered in the simulations and all bandwidth requests have been set to 1. In
these simulations, for each (o, d, s), the parameters of the learning algorithms
are tuned considering the number of RTs of that (o, d, s) and the RT admissibil-
ities. For the LRI-based LSSR, the learning parameter is set to be γ = .001. For
LRεP-based LSSR, γ = .001 and β = .0001 and for the EXP3.P-based LSSR,
the parameters are set at their optimal values that lead to optimal bound on the
regret of the algorithm.

As a measure of network utility, an estimation of the total network admissi-
bility is used. The admissibility is estimated using exponential smoothing. The
following calculation is done recursively once rejected/accepted response to each
bandwidth request is received:

R(n) = ρR(n− 1) + (1− ρ)x . (29)

Here, R(n) is the network admissibility after arrival of the nth bandwidth re-
quest; x takes a value of ‘1’ when the current bandwidth request is accepted and
‘0’ otherwise. The parameter ρ is the smoothing parameter. The larger the ρ,
the slower the R converges and the smoother the convergence curve appears. In
the performed simulations, ρ has been set to 0.9999.

The mean and the standard deviation (STD) of the average admissibilities of
SPF, STT, RLS and LSSR with different learning algorithms obtained from ten
discrete event simulation runs each with a different randomly generated forecast-
ing error matrix in the NSFnet and AT&T network topologies are presented in
Table 1. The results of discrete event simulations are the average admissibilities
after the transient phase. For each traffic matrix, the admissibility of the LSSR
algorithm with load sharing factors at the user equilibrium computed from the
numerical method of Section 4 is also listed in the table.

The results presented in Table 1 show that in all these cases, the event
dependent routing algorithms have comparable admissibility performances and
these performances are effectively better than the SPF algorithm. It is important
to note that increasing the admissibility when employing the SPF algorithm
translates to increasing the link capacities; SPF can achieve the admissibility
performances of event dependent routing schemes only when the link capacities



Table 1. Admissibility performance comparison of different routing schemes in
NSFnet and AT&T networks; 10 Runs, each with a different forecasting error
matrix.

NSFnet AT&T
Mean STD Mean STD

SPF .9537 .0043 .9712 .0026
UE .9888 .0020 .9830 .0027
LRI .9891 .0024 .9832 .0025
LRεP .9890 .0020 .9830 .0027
EXP3.P .9888 .0025 .9829 .0029
STT .9906 .0025 .9835 .0025
RLS .9912 .0022 .9840 .0025

are increased. Discrete event simulations with increased link capacities reveal
that SPF achieves the admissibility performances of the event dependent routing
schemes of Table 1 only when the link capacities are increased 12.78±256×10−4%
for NSFnet and 3.85 ± 96 × 10−4% for AT&T network topology. In practice,
increasing the link capacities is a costly infrastructure modification operation.
It is highly desirable to have routing algorithms that can improve the network
admissibility without adding the infrastructure costs.

The next set of simulations illustrate the performance comparison of different
routing algorithms in transient phase. For these simulations, the example 11-
node network topology of Fig. 6 has been used. In this network, there are five
alternate paths between (1, 2) with the first path being the shortest path and
four other paths having the same number of hops. Each route-tree of the RL-
based LSSR has been built with three alternate paths and the maximum number
of crank backs for STT and RLS has also been set to three. At time 300 sec,
there has been an abrupt decrease on the admissibility of the link between (1, 3)
which could simulate abrupt increase on the traffic demand between (1, 3) or a
link or node failure along this path. In these simulation, for LSSR model, 36
RTs have been considered with the first 12 RTs having the shortest path as
the first path and the next RTs having different combinations of other alternate
paths. Considering the number of possible actions (number of RTs), the learning
parameter in the LRI-based LSSR for these simulations is set to γ = .0001 and
for LRεP-based LSSR, γ = .0005 and β = .00005. For the EXP3.P-based LSSR,
again, the γ and κ paramaters are set at their values that optimize the regret
bound. Figure 7 is an example of simulation results of different algorithms.
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Fig. 6. Example 11-node network topology.
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Fig. 7. Transient performance comparison in example 11-node network; at time
300 sec, the admissibility of the shortest path of (1, 2) abruptly decreases.

After the startup, the longer transient time of the RL-based LSSR algorithms
compared with that of STT and RLS is due to the large number of their route-
trees. For the RL-based LSSR, the number of possible RTs when M alternate
paths are used is O(M !) whereas for STT and RLS, at each trial, there are O(M)
possible choices. The number of possible RTs can be an issue in employment of
the RL-based LSSR schemes in mesh network topologies where all the alternate
paths have the same number of hops and the number of alternate paths increases
as the number of nodes increases. However, in general network topologies this
issue is less important. This is due to the fact that in general network topologies,
all the alternate paths do not have the same number of hops and the admissibility
of the paths decreases as the number of hops along those paths increases. For that
reason, in general network topologies, using only the first K-shortest paths can
efficiently reduce the number of RTs and eliminate the number of RT complexity
issue.

In the simulation results of Fig. 7, after the sudden change at time 300 sec
on the admissibility of the shortest path of (1, 2), this path cannot be used for
routing the bandwidth requests of (1, 2) anymore. STT has the lowest admissi-
bility performance. This is due to the path selection rule of the STT algorithm



where the shortest path is always tried first, then the last successful path is tried
and if the bandwidth request is rejected on both these two paths, other alternate
paths are tried randomly. Under normal traffic conditions, always choosing the
shortest path first can improve admissibility performance as the traffic routed
along the non-shortest paths uses more network resources. This is especially the
case for fully connected networks where the traffic routed along a non-shortest
path uses twice network resources than the traffic routed along the shortest path.
However, when the shortest path is highly congested or when there is a failure
along this path, as the maximum number of crank backs is fixed, always choos-
ing the shortest path first can degrade the performance. In these simulations,
RLS performs better than STT after the sudden change as a result the learning
associated with its path selection policy. The RL-based LSSR schemes have the
advantage over STT and RLS for the flexibility of learning the best sequence of
alternate paths and adapting to the best sequence changes once they occur.

On the performance comparison of the LSSR with different learning schemes,
the EXP3.P-based LSSR algorithm has a lower admissibility degradation peak
and a shorter transient time when sudden changes happen in the network. How-
ever, after the transient phases, its average admissibility is smaller than the
LRI-based LSSR and LRεP-based LSSR. This observation can be explained con-
sidering the fact that the probability of selecting each RT is lower bounded in
the EXP3.P algorithm. This lower bound helps in tracking the changes, while
causing a smaller admissibility performance as a result of the lower bound on
the amount of traffic sent to those RTs with high blocking rate. The shorter
transient time of the LRεP algorithm compared with the LRI scheme is due
to the update procedure of this algorithm where the probability of the selected
action is decreased if its associated reward is equal to zero.

6.3 Performance Investigation, Numerical Results

The comparison of the LSSR model with load sharing factors at user equilibrium,
system optimal and Nash bargaining solutions are presented in this section.
The performance is compared from two perspectives. First, the gap between the
overall network admissibility obtained from decentralized routing schemes and
that of the system optimal and the Nash bargaining solutions is investigated.
Next, the fairness of the routing policies at the user equilibrium and system
optimal solutions with respect to the Nash bargaining solution is examined.
As the Nash bargaining solution maximizes the product of throughputs, the



comparison of some function of product of throughputs can be used to investigate
the fairness issue. In the following, the geometric mean of the admissibilities of
all the users is employed to examine the fairness issue. The numerical results
from the 14-node NSFnet and the 26-node AT&T network topologies with the
same sets of RTs and the same ten different traffic matrices that were used in
discrete event simulations are summarized in Table 2.

Table 2. Average network admissibility & geometric mean of (o, d, s) admissibil-
ities for the LSSR model with load sharing factors at UE, SYS and NB solutions
in the NSFnet and AT&T networks; average over 10 runs, each with a different
forecasting error matrix

Network Adm. Adm. Geometric Mean
Mean STD Mean STD

F UE .9888 .0020 .9898 .0022

S SYS .9979 .0027 .9979 .0020

N NB .9952 .0030 .9978 .0020

&
T

UE .9888 .0020 .9841 .0028

T SYS .9892 .0022 .9855 .0028

A NB .9868 .0021 .9870 .0029

The results of Table 2 show that there is a performance gap between the
user equilibrium and system optimal solutions; however this gap is less than 1
±108×10−4% and user equilibrium is relatively efficient for these well engineered
networks. For these traffic matrices, the LSSR with load sharing factors at user
equilibrium achieves the admissibility performance of the LSSR with system opti-
mal load sharing factors when the link capacities are increased 8.28±801×10−4%
for NSFnet and 2.55±276×10−4% for AT&T network topology. Moreover, these
results reveal that the gap between the geometric mean of the admissibilities ob-
tained from the system optimal and the Nash bargaining solutions are in the
same range, suggesting that the system optimal solution is relatively fair in
these cases. This in turn means that the proposed RL-based LSSR schemes pro-
vide decentralized, scalable and efficient approaches for routing the bandwidth
guaranteed paths in well engineered networks.

The question of non-uniqueness of the local optimal solutions is investigated
by solving the optimization problems with different randomly generated initial
load sharing factors. In all the results obtained in this study, there is no nu-
merically significant difference among the admissibilities obtained from different



randomly generated starting points suggesting that the obtained results all be-
long to a flat admissibility region. Although in general there is no theoretical
guarantee for the uniqueness of this region, in all the extensive numerical results
we have performed, we have not observed any counter example.

6.4 Partially-Decentralized Architecture, Simulation Results

In this section we first give a simple example that illustrates the potential of
performance degradation associated with decentralized routing when traffic ma-
trix and link capacities are not well matched. We then demonstrate the merit of
partially-decentralized routing architecture in terms of improved admissibility
performance by converging to the system optimal solution for these scenarios.

Consider the small network of Fig. 8 with the link capacities and the traf-
fic matrix as given in the figure. In this network, there are two alternate paths
between nodes (1,2). Let us consider two RTs each with one alternate path for
routing the traffic between (1,2). In the user equilibrium, all the traffic of (1,2)
is routed over the first alternate path whereas in the system optimal solution,
all the traffic of (1,2) is routed over the second path. A simple calculation using
the ErlangB formula [47] shows that the system optimal solution improves the
network admissibility by a factor of 1.03. In order to achieve the admissibility
performance of the system optimal solution using the fully decentralized rout-
ing schemes, the link capacities need to be increased 5%. However, the partially
decentralized routing architecture presented in Section 5 converges to this net-
work admissibility performance without any need to increase the link capacities.
The simulation results of fully decentralized LRI-based LSSR versus partially-
decentralized routing architecture with system optimized reward modification
probabilities are given in Fig. 9. In these simulations the learning parameter γ
is set equal to .001.
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Fig. 8. Example 6-node network topology.
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Fig. 9. Admissibility comparison of LSSR with user equilibrium and system
optimal load sharing factors. System optimal performance is obtained from the
partially-decentralized architecture.

This example is a network with abnormal link state/traffic demand sim-
ulating subnetwork abnormal conditions that can happen in practice due to
link/node failures or abnormal traffic demands. In these scenarios, the proposed
on-line partially-decentralized architecture converging to the system optimal so-
lution can efficiently improve the network performance. Note that the on-line
computational load overhead imposed to the decentralized modules in the pro-
posed partially-decentralized routing architecture, compared with fully decen-
tralized scheme, is related to the traffic measurements and the modification
of the reward probabilities. The major computational load that is due to the
update of the reward modification probabilities is performed in the central pro-
cessor which is working in parallel with the decentralized modules. This reveals
the applicability of the devised architecture for on-line routing of bandwidth
guaranteed paths when the traffic demand and the network resources are not
well matched and decentralized routing schemes are not efficient.

7 Summary and Conclusion

On-line routing of bandwidth guaranteed paths when there is no a-priori in-
formation about the traffic demand is a challenging problem with significant
practical implications. In this paper, decentralized learning algorithms were pro-
posed for bandwidth guaranteed path routing in MPLS networks. The proposed
algorithms are rather simple and use only their locally observed information
for updating their routing policy. The asymptotic behaviors of the proposed
algorithms were investigated and the asymptotic convergence of one of these
schemes to the user equilibrium under stationary assumption of the network
state was proved. This predictable asymptotic behavior is especially important
in the network design and analysis. The potential of using learning algorithms



was demonstrated through discrete event simulation in 14-node NSFnet and
26-node AT&T network topologies. Simulation results suggest that the devised
learning-based routing algorithms effectively outperform the SPF algorithm and
have a comparable performance with alternate event dependent routing schemes,
STT and RLS.

Our results suggest that the devised routing algorithms outperform the SPF
algorithm in all the cases and are comparable with state-of-the-art event depen-
dent routing schemes such as STT and RLS.

The performance of the proposed algorithms at the user equilibrium was com-
pared with centralized solution benchmarks, the system optimal and the Nash
bargaining solutions. Computationally efficient numerical methods for comput-
ing these solutions were provided. Numerical results for NSFnet and AT&T
network topologies indicate that there is a performance gap between the user
equilibrium and the centralized optimal solutions; however, this gap is typically
quite small (less than 1 ±108×10−4%) for well engineered networks i.e. networks
where traffic flows and network capacities are “well matched”. These results indi-
cate that the proposed decentralized learning techniques provide efficient, stable
and scalable approaches for routing the bandwidth guaranteed paths in the well
engineered networks.

As network capacities and traffic load may not always be well matched, due to
abnormal traffic conditions or network failures, a partially-decentralized routing
architecture was devised to obtain the performance of the system optimal and
the Nash bargaining solutions. This mechanism has a performance comparable
with the centralized routing methods and a reduced on-line computational load
that makes it applicable to on-line routing. Example numerical results even for
the well engineered NSFnet network topology, where the gap between the admis-
sibility of the proposed routing schemes at the user equilibrium and the system
optimal solution is .9± 108× 10−4%, reveal that in order to achieve the admis-
sibility performance of the system optimal solution using the fully decentralized
routing schemes, the link capacities need to be increased 8.28 ± 801 × 10−4%.
For these scenarios, the partially-decentralized routing architecture achieves the
system optimal performance without any need to increase the link capacities.
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Table 3. Capacity Matrix for NSFnet Network

0 78 130 90 0 0 0 0 0 0 0 0 0 0
76 0 146 0 0 0 0 172 0 0 0 0 0 0
129 149 0 0 0 216 0 0 0 0 0 0 0 0
93 0 0 0 99 0 0 0 117 0 0 0 0 0
0 0 0 102 0 126 70 0 0 0 0 0 0 0
0 0 218 0 119 0 0 0 0 0 0 0 107 98
0 0 0 0 70 0 0 70 0 0 0 0 0 0
0 167 0 0 0 0 73 0 0 0 0 209 0 0
0 0 0 116 0 0 0 0 0 253 109 0 0 0
0 0 0 0 0 0 0 0 253 0 0 247 113 0
0 0 0 0 0 0 0 0 109 0 0 74 70 0
0 0 0 0 0 0 0 218 0 242 72 0 0 112
0 0 0 0 0 103 0 0 0 119 70 0 0 0
0 0 0 0 0 97 0 0 0 0 0 112 0 0

Table 4. Traffic Matrix for NSFnet Network

0.000 16.090 72.643 1.574 7.658 22.593 1.778 14.147 9.283 9.055 3.581 7.112 1.562 3.975
16.090 0.000 11.785 0.927 4.254 10.960 1.066 8.293 5.816 5.613 2.006 4.432 0.990 1.981
72.643 11.785 0.000 4.470 14.732 48.425 3.022 27.177 15.709 15.836 7.327 12.776 2.895 6.883
1.574 0.927 4.470 0.000 2.679 4.559 0.317 3.390 2.019 1.803 1.181 1.498 0.330 0.711
7.658 4.254 14.732 2.679 0.000 18.237 2.451 15.595 7.645 6.261 2.578 5.892 1.244 2.692
22.593 10.960 48.425 4.559 18.237 0.000 8.801 69.113 34.290 30.340 14.858 27.393 6.604 21.869
1.790 1.066 3.022 0.317 2.451 8.801 0.000 18.288 4.572 2.971 1.282 3.340 0.647 1.676
14.160 8.293 27.177 3.390 15.595 69.113 18.288 0.000 56.108 32.384 14.401 42.671 6.858 22.021
9.283 5.816 15.709 2.019 7.645 34.290 4.572 56.108 0.000 36.436 16.611 64.008 9.258 12.280
9.055 5.613 15.836 1.803 6.261 30.340 2.984 32.384 36.436 0.000 68.008 43.954 12.954 10.401
3.581 2.006 7.327 1.181 2.578 14.858 1.282 14.401 16.611 68.008 0.000 22.402 2.540 4.991
7.112 4.432 12.776 1.498 5.892 27.393 3.340 42.671 64.008 43.967 22.402 0.000 15.367 10.769
1.562 0.990 2.895 0.330 1.244 6.604 0.647 11.226 9.258 12.954 2.540 15.367 0.000 3.022
3.975 1.981 6.883 0.711 2.692 21.869 1.676 22.021 12.115 10.401 4.991 10.769 3.022 0.000



Table 5. Traffic Matrix for AT&T Network, Columns[1-19]

0 40 47 0 0 0 45 0 0 0 0 0 0 0 0 0 0 0 0
40 0 47 0 0 0 50 0 0 0 0 0 0 0 0 0 0 0 0
47 47 0 198 0 0 1593 180 0 0 0 0 0 0 0 0 0 0 0
0 0 186 0 75 0 313 51 0 0 0 0 0 0 0 0 0 0 0
0 0 0 83 0 45 94 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 43 0 295 0 0 0 0 0 0 0 0 0 0 0 0
44 51 1609 292 101 317 0 0 991 0 0 0 0 0 0 0 1104 153 154
0 0 195 40 0 0 0 0 94 136 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 979 83 0 0 0 1027 0 0 0 0 132 0 0
0 0 0 0 0 0 0 140 0 0 38 67 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 40 0 66 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1010 71 63 0 224 599 0 361 0 0 0
0 0 0 0 0 0 0 0 0 0 0 223 0 47 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 600 42 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 157 297 0 0
0 0 0 0 0 0 0 0 0 0 0 359 0 0 142 0 672 0 0
0 0 0 0 0 0 1114 0 116 0 0 0 0 0 308 665 0 72 0
0 0 0 0 0 0 163 0 0 0 0 0 0 0 0 0 57 0 0
0 0 0 0 0 0 155 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 139 0 0 0 0 0 0 0 0 0 70
0 0 0 0 0 0 103 52 60 0 0 46 0 0 0 87 0 0 0
0 0 0 0 0 0 0 0 42 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 126 0 0 0 0 175 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 167 0 0
0 0 0 0 0 0 0 0 0 0 0 396 0 0 61 0 0 0 0



Table 6. Traffic Matrix for AT&T Network, Columns[20-26]

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 105 0 0 0 0 0
0 42 0 0 0 0 0

130 60 39 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 44 0 122 0 0 394
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 63
0 92 0 0 0 0 0
0 0 0 170 0 168 0
0 0 0 0 0 0 0
70 0 0 0 0 0 0
0 49 0 0 0 0 0
41 0 40 0 0 0 0
0 70 0 0 0 0 0
0 0 0 0 82 0 0
0 0 0 87 0 40 0
0 0 0 0 40 0 0
0 0 0 0 0 0 0



Table 7. Traffic Matrix for AT&T Network, Columns[1-13]

0.000 1.115 9.363 2.212 1.066 1.115 3.333 1.103 1.148 1.112 1.138 2.261 1.083
1.107 0.000 9.925 2.500 1.137 2.119 4.529 1.125 1.115 1.044 1.058 2.069 1.012
9.504 10.134 0.000 136.958 29.729 81.424 251.831 51.103 30.575 36.552 16.688 101.505 61.489
2.173 2.421 134.162 0.000 6.951 16.625 54.438 10.027 6.570 8.238 3.263 21.183 11.728
1.095 1.096 27.140 6.726 0.000 4.325 11.470 2.428 2.231 2.149 1.053 4.737 3.279
1.043 2.489 90.049 16.912 4.505 0.000 29.489 5.848 4.656 4.407 2.238 12.505 7.416
3.454 4.346 247.538 47.163 10.101 30.634 0.000 19.016 12.587 14.871 6.636 39.704 22.235
1.037 1.109 45.378 10.016 2.041 6.934 19.354 0.000 2.050 3.447 2.075 7.392 4.311
1.060 1.150 30.970 6.402 2.232 4.295 12.559 2.272 0.000 2.215 1.062 5.413 3.310
1.035 1.090 40.181 7.707 2.184 4.415 13.075 3.204 2.175 0.000 1.084 5.334 3.009
1.158 1.071 16.543 3.369 1.037 2.243 7.107 2.297 1.131 1.009 0.000 3.507 2.385
2.125 2.357 106.455 22.144 4.335 13.936 35.401 7.766 5.417 5.617 3.094 0.000 8.944
1.005 1.052 58.221 11.424 3.203 7.938 23.220 4.586 3.487 3.178 2.134 7.873 0.000
2.289 3.433 174.198 28.637 7.354 20.599 59.221 13.836 7.630 10.179 4.294 25.923 15.443
2.358 2.143 112.554 21.198 5.568 12.294 40.363 8.208 5.096 6.143 3.462 16.956 8.877
4.547 5.704 328.567 65.289 13.234 38.241 124.533 24.122 15.297 18.005 8.378 44.633 26.477
1.107 1.146 71.917 13.194 3.351 8.945 26.335 5.862 3.372 4.538 2.357 10.886 6.658
1.052 1.054 51.885 10.324 1.977 6.270 18.734 4.450 2.262 3.362 2.300 7.536 4.516
1.058 1.129 34.324 6.855 2.258 4.464 12.588 3.064 2.123 2.088 1.117 5.635 3.208
1.167 1.156 35.692 7.030 2.237 4.643 13.126 3.275 2.291 2.161 1.103 5.260 3.349
1.163 1.042 37.653 8.174 2.283 5.567 13.725 3.216 1.953 2.248 1.017 6.626 3.097
1.066 1.119 2.096 1.152 1.061 1.109 1.008 1.004 1.160 1.012 1.076 1.071 1.089
1.144 1.097 49.467 9.080 2.274 6.734 17.857 4.308 2.199 3.184 2.197 7.155 4.333
1.111 1.032 16.792 3.136 1.041 2.333 6.794 2.132 1.011 1.040 1.112 3.236 2.305
1.079 1.084 34.676 7.963 2.298 4.718 13.565 3.418 2.064 2.310 1.044 5.374 3.211
2.108 2.182 121.334 21.974 4.916 13.567 42.009 8.949 5.557 7.170 3.190 17.343 9.453



Table 8. Traffic Matrix for AT&T Network, Columns[14-26]

2.101 2.344 4.748 1.124 1.009 1.056 1.110 1.117 1.109 1.071 1.111 1.058 2.336
3.345 2.273 5.230 1.131 1.041 1.055 1.180 1.147 1.123 1.139 1.099 1.067 2.342

166.259 106.317 342.008 72.268 49.963 34.087 35.845 39.854 2.384 52.193 16.516 37.774 114.978
35.645 20.875 63.196 13.024 9.257 6.360 6.453 7.706 1.209 10.147 3.207 7.726 23.350
7.921 5.250 13.880 3.231 2.335 2.036 2.194 2.191 1.138 2.504 1.203 1.998 5.673
21.235 12.511 42.716 8.709 7.093 4.591 4.417 5.226 1.024 6.547 2.175 4.802 13.907
62.225 40.339 115.731 25.079 18.920 13.024 14.492 13.765 1.119 19.101 6.133 13.631 43.392
13.408 8.047 25.685 5.559 4.091 3.041 3.287 3.294 1.068 3.967 2.166 3.045 8.956
8.217 5.851 15.432 3.577 2.272 2.156 2.303 2.308 1.042 2.139 1.068 2.158 5.643
8.792 6.557 15.761 4.426 2.878 2.184 2.191 2.134 1.138 2.988 1.093 2.222 6.396
4.684 3.401 8.835 2.271 2.141 0.971 1.055 1.181 1.126 2.188 1.078 1.057 3.522
25.900 18.114 51.681 12.144 8.932 5.126 5.585 6.331 1.089 7.193 3.160 5.470 18.457
14.301 11.021 28.943 6.488 4.496 3.000 3.473 3.406 1.079 4.252 2.008 3.355 8.722
0.000 25.906 77.219 18.242 12.441 9.287 8.067 9.251 1.051 11.554 4.301 9.254 27.037
27.168 0.000 49.948 11.161 8.041 5.460 5.200 6.313 0.998 7.640 3.044 5.113 18.395
73.818 50.196 0.000 30.545 22.772 17.418 16.341 7.517 1.010 24.194 7.663 16.693 48.477
16.276 10.613 29.878 0.000 5.784 3.392 4.501 4.448 1.035 5.926 2.299 4.258 13.048
13.578 7.916 22.066 4.845 0.000 3.378 3.147 3.608 1.077 4.494 2.460 3.328 8.902
8.399 5.486 16.985 3.242 3.521 0.000 2.128 2.212 1.109 3.207 1.128 2.347 6.813
8.082 5.819 18.020 4.265 3.466 2.231 0.000 2.154 1.112 3.329 1.122 2.412 6.227
9.722 6.817 19.960 4.310 3.335 2.053 2.053 0.000 1.031 3.172 1.157 2.281 6.665
1.078 1.014 1.072 1.022 1.083 1.060 1.157 1.034 0.000 1.048 1.123 1.144 1.193
11.397 6.533 20.584 5.562 4.456 3.190 3.442 3.284 1.128 0.000 2.342 3.276 9.119
4.155 3.389 7.791 2.222 2.179 1.110 1.064 1.124 1.180 1.990 0.000 1.094 3.430
8.927 5.222 16.952 4.241 3.286 2.002 2.272 2.167 1.071 3.289 1.107 0.000 6.799
25.868 19.549 49.104 12.558 9.107 6.142 7.027 6.544 1.099 9.095 3.191 6.762 0.000


