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Abstract

This paper investigates a class of learning problems called learning satisfiability
(LSAT) problems, where the goal is to learn a set in the input (feature) space that
satisfies a number of desired output (label/response) properties. LSAT problems
are motivated, in part, by applications in computational finance, and an experi-
mental investigation of LSAT in the context of portfolio selection is reported. A
distinctive aspect of LSAT problems is that the output behavior is assessed only
on the solution set, whereas in most statistical learning problems output behavior
is evaluated over the entire input space. Consequently, certain learning criteria
arising naturally in LSAT problems require a novel large deviation bounding tech-
nique.

1 Learning and Satisfaction

In most statistical learning problems, one is interested in minimizing a risk function such as expected
squared error or probability of error. However, in many applications, one is interested in a solution
to the learning problem that satisfies several criteria simultaneously, rather than simply optimizing
one. In this paper, we introduce and study learning satisfiability (LSAT) problems, a class of learning
problems where the goal is to learn a set in the input (feature) space that satisfies a number of desired
properties expressed in terms of expectations and/or event probabilities.

Our interest in LSAT problems is motivated in part by applications in computational finance. In the
portfolio selection problem we examine later in the paper, one is interested in identifying a set of
stocks based on historical data such that not only is the expected return above some threshold but
large losses are rare. This is a variant of the classical portfolio selection problem [1, 2], where the
goal is to maximize expected return subject to a constraint on the allowable variance. Mathemati-
cally, suppose that we have training data {Xi, Yi}n

i=1
iid∼ P , where each input (feature vector) Xi

has an associated output (label) Yi and P is the unknown joint distribution of the pair (Xi, Yi). We
seek the largest set G in the input space such that: (i) the expected output value Y at every point
in G is non-negative; and (ii) the probability that the output Y stays above a lower limit on G is
guaranteed to be large. Both criteria are in the form of constraints and express different measures of
confidence in a favorable output.

LSAT problems also arise in a number of other important applications in classification and statis-
tics. One example from this class is constrained multi-class classification, where in addition to
minimizing the probability of misclassification over all classes, we ensure that the solution meets
pre-specified constraints on the class-conditional error rates for some subset of classes. Another



example is an extension of the false discovery rate approach for controlling the number of false
positives in multiple hypothesis tests [3, 4]. In this setting, an LSAT problem might require that the
false nondiscovery rate be minimized subject to the constraint that the false discovery rate does not
exceed a specified threshold.

1.1 Related Work

An example of learning with multiple criteria is the Neyman-Pearson (NP) learning problem, in
which one seeks a classifier that minimizes the false negative rate subject to a constraint on the false
positive rate [5, 6]. An important distinction between NP learning and LSAT problems is that in
LSAT problems output behavior is assessed on the solution set, whereas in NP learning (as well
as most other standard learning problems) one is concerned with output behavior over the entire
input space. Thus, LSAT criteria generally involve conditional probabilities/expectations that are
functions of the target set, i.e. conditioning is on membership in the output set. In contrast, the
conditioning in the constraints used in Neyman-Pearson learning (and in the performance metrics
used in many standard classification approaches) is on the input class label. This difference leads to
requirements for new theory and learning methods.

LSAT problems are also related to classical satisfiability (SAT) problems, most closely perhaps to
stochastic SAT (SSAT) problems [7, 8]. SSAT problems involve criteria that depend on a mixture
of controllable decision variables and stochastic variables, and the main objective is to determine
whether there exist values for the decision variables such that the probability that the criteria are sat-
isfied exceeds a certain threshold. A major difference between SSAT and LSAT problems is that the
randomness in SSAT problems is typically known and therefore learning from data is not involved.
Also, LSAT does not involve decision variables, but focuses on identification of the (possibly empty)
set of inputs that satisfy stochastic criteria. Finally, since LSAT involves the identification of max-
imum volume sets, there are relationships with one-class neighbor (and support vector) machines
and methods for learning minimum volume sets [9, 10, 11].

With regard to the computational finance application that we use to illustrate the framework, there
has been related work in applying classification techniques (notably various flavours of CART) to
partition stocks into outperforming and under-performing assets [12, 13]. Portfolios are then con-
structed by selecting a subset of the outperforming assets. These approaches make no attempt to
satisfy any form of constraint on some form of risk metric associated with the portfolio. Learning
theoretic approaches have been applied to many variations of the portfolio selection problem, in
particular addressing the more involved task of devising sequential investment strategies, wherein
multiple trading periods are considered and the aim is to devise a strategy for adapting the port-
folio (potentially at some cost) after each trading period to maximize the growth [14, 15, 16, 17].
Although the application addressed is similar, our approach is fundamentally different, in that we
learn a set that satisfies specified constraints over a high-dimensional feature space. The learning-
theoretic approaches to sequential investment strategies primarily treat the successive returns as a
multi-variate time-series; there is not the notion of informative stock descriptors that we investi-
gate here. The extension of our approach to sequential investments is an attractive avenue of future
research.

2 LSAT Problem Formulation

To formally define our problem, let us first introduce the following notation. Features X are elements
in the input space X . An output Y ∈ Y is associated with each input. Let P denote a collection
of probability measures on X × Y . Each pair (X, Y ) is distributed independently and identically
according to an unknown probability measure P ∈ P on X × Y . We are interested in identifying a
set in the input space where certain output constraints are met. Let G denote a collection of candidate
sets and let C : G×P → Rk+1 be a constraint function mapping each set and probability measure to
a (k + 1)-dimensional vector of real numbers. For a given probability measure P , we are interested
in the largest set G ∈ G that satisfies the constraint C(G, P ) ≥ 0, where the inequality is applied
element-by-element. Specifically, we are interested in the solution to the following optimization:

max
G∈G

λ(G) subject to C(G, P ) ≥ 0,



where λ(G) denotes the volume of a set G. It is possible for λ(G) to be a more general objective
function, but for concreteness we focus on volume, and assume that there is an associated measure
on G. A solution may not exist, depending on the nature of the constraints and P (in such cases, we
consider the empty set to be a default solution).

An alternate expression of the LSAT problem, which also lends itself naturally to the identification
of the largest feasible set, is to express one of the constraint criteria as a risk function to be minimized
subject to the other constraints. Write

C(G, P ) = [ C0(G, P ) · · · Ck(G, P ) ]T .

Then we can pose our problem as

min
G∈G

R(G, P ) subject to Cj(G, P ) ≥ 0, j = 1, . . . , k

where the risk function R(G, P ) is chosen such that it is minimized by the largest set satisfying
C0(G, P ) ≥ 0. This optimization produces the largest feasible set, as desired. We wish to stress
that any such risk function must satisfy two important properties with respect to the other constraints.
First, if there exists a non-empty solution to the standard LSAT formulation, the (constrained) risk
minimizer must coincide with this solution. Second, if there is no solution, the empty set must have
smaller risk than any set failing to satisfy the constraint C0.

2.1 Two Types of Constraints

One of the more innovative aspects of our work is the treatment of set-based constraints. In LSAT
problems, we assess output behavior only on the solution set, whereas in most statistical learning
problems output behavior is evaluated over the entire input space. We consider two types of set-
based output constraints.

1. Point-wise Constraint: C(G, P ) = C(x,G, P ) is a function of the input variable x, and the
constraint takes the form

C(x,G, P ) ≥ 0, ∀ x ∈ G

2. Set-average Constraint: C(G, P ) is only a function of the set G, and the constraint C(G, P ) ≥
0 is only satisfied “on-average” over the set G.

Examples of the point-wise type of constraint include E[Y |X = x] ≥ 0 and P (Y ≥ L|X = x) −
p ≥ 0, ∀x ∈ G. Corresponding examples for the set-average constraint type are E[Y |X ∈ G] ≥ 0
and P (Y ≥ L|X ∈ G) − p ≥ 0. Set-average constraints lead to statistical learning problems
involving “self-normalizing” random sums, which require novel large deviation bounds, such as that
provided in the Appendix.

2.2 An Illustrative LSAT Example: Portfolio Selection

We illustrate the class of LSAT problems using an example motivated by financial data analysis.
We address a modification of the classical portfolio selection problem as posed by Markowitz [1,
2]. In the Markowitz model, the return is the expected value of the random portfolio, which has
an associated risk as quantified by the variance of the return. The classical problem is to assign
an available capital to a set of available stocks in order to maximize the return when there is an
upper bound on the acceptable risk or to minimize the risk when there is a lower bound on the
acceptable return. This can be posed as a convex quadratic programming problem [1], but the
resultant solutions are extremely susceptible to perturbations in the model parameters, which being
estimates of market behaviour exhibit substantial statistical error. Approaches have been proposed to
derive more robust solutions [2], but these are parametric in nature, and good performance requires
that the adopted model provides an adequate explanation of what can be high-dimensional data with
complex structure.

Here we adopt a non-parametric approach and address a relaxed problem that provides more robust
solutions. Instead of seeking to identify a portfolio that maximizes return or minimizes risk, we
attempt to identify a set of stocks that satisfies two constraints: the expected return of any member
stock must be greater than a threshold U and the probability of large loss (return less than L) over the



entire set must be smaller than a specified threshold p. We pose this as an LSAT problem based on
historical training data and solve using a natural risk minimization formulation. Note that the LSAT
framework could incorporate a constraint on risk as measured by variance over the set, providing
a more natural parallel to the risk in the classical problem; we choose the alternative measure of
risk because it better illustrates the self-normalizing set-average constraints that are natural in other
LSAT problems and it also provides a meaningful, less-studied measure of risk.

We are interested in the largest set G ∈ X such that E[Y |X = x] ≥ U , for all x ∈ G, and
P (Y > L|X ∈ G) ≥ p. The parameters U , L < U , and p > 0 are specified by the user. To cast
this in the notation above, let

C(G, P ) =
[

minx∈G E[Y |X = x]− U
P (Y > L|X ∈ G)− p

]
In an investment application, U > 0 expresses the desire for expected positive returns, and L might
typically be a negative value with p > 0 being a probability close to one in order to avoid very large
losses. The probability measure governing stock features and returns is unknown, but we do have
access to historical records of stock characteristics and performance. These records provide training
data, possibly with the inclusion of features that reflect trends in the market. In practice, one can
obtain empirical constraints by employing (nonparametric) estimators of f(x) = E[Y |X = x]
and P (Y > L|X ∈ G) in place of their ensemble-average counterparts. We characterize the
performance of methods based on empirical constraints in the next section.

Before concluding this section, we demonstrate the constrained risk minimization formulation of
the LSAT problem. Define the risk function

R(G, P ) = E[(U − Yi)(1Xi∈G − 1Xi∈Ḡ)]

where 1Xi∈G is the indicator function (outputs 1 if Xi ∈ G and 0 otherwise) and Ḡ denotes the
complement of G. It is easy to see that this risk is minimized (under the constraint) by the U -level set
of the regression function E[Y |X = x], i.e., the largest set satisfying minx∈G E[Y |X ∈ x]−U ≥ 0
[18]. As required in the risk minimization formulation, the empty set has smaller risk than any set
that fails to satisfy the constraint C0.

3 Learning to Satisfy

In the sequel we focus our attention on the alternate formulation of the LSAT problem in terms of
R(G, P ) because of its applicability to our finance application. The theoretical claims below have
analogous statements for the original formulation in terms of λ(G).

We are interested in identifying the set G ∈ G that satisfies the constraints C(G, P ) ≥ 0 and has
minimum risk R(G, P ). However, since the probability measure P is unknown, we aim to learn this
set from a training sample {Xi, Yi}n

i=1. Suppose that we form empirical versions of the constraint
functions Ci(G, P̂ ) and risk R(G, P̂ ), based on the empirical distribution P̂ of the training sample.
For the remainder of the paper we will no longer explicitly indicate the dependence of the constraints
on the underlying probability measure P , simply writing C(G) = C(G, P ), Ĉ(G) = C(G, P̂ ),
R(G) = R(G, P ), and R̂(G) = R(G, P̂ ).

Define the optimal set

G∗ = arg min
G∈G

R(G) subject to Cj(G) ≥ 0, j = 1, . . . , k.

Let ε0, . . . , εk > 0 be fixed and define

Ĝ = arg min
G∈G

R̂(G) subject to Ĉj(G) ≥ −ε1, j = 1, . . . , k.

By allowing the constraints to be violated by the small tolerances εi, we are able to relate the per-
formance of Ĝ to that of G∗.
Lemma 1. If supG∈G |R(G) − R̂(G)| ≤ ε0 and supG∈G |Cj(G) − Ĉj(G)| ≤ εj for j = 1, . . . , k
then

R(Ĝ) ≤ R(G∗) + 2ε0 and Cj(Ĝ) ≥ −2εj , j = 1, . . . , k



Proof. Under the assumed deviation bounds Ĉj(G∗) ≥ Cj(G∗) − εj ≥ −εj , which implies that
G∗ is in the empirical constraint set. Thus Ĝ minimizes R̂ subject to the empirical constraints:
R(Ĝ) ≤ R̂(Ĝ) + ε0 ≤ R̂(G∗) + ε0. Applying the assumed deviation bound again to R̂(G∗)
produces the result.

Note that if the deviation bounds, rather than holding deterministically as stated in the lemmas,
instead hold with large probability with respect to a random training sample, then the conclusions
of the lemma also hold with the same large probability.

4 Finance Example — Revisited

Recall the problem of identifying the largest set G ∈ X such that minx∈G E[Y |X = x] ≥ U and
P (Y > L|X ∈ G) ≥ p. This problem is equivalent to solving the constrained risk minimization

min
G∈G

E[(U − Y )(1X∈G − 1X∈Ḡ)] subject to P (Y > L|X ∈ G) ≥ p

We do not know the probability law P governing (X, Y ), so we use natural empirical counterparts
of the risk and constraint based on available training data:

R̂(G) =
1
n

n∑
i=1

(U − Yi)(1Xi∈G − 1Xi∈Ḡ) and Ĉ(G) =
∑n

i=1 1Xi∈G,Yi<L∑n
i=1 1Xi∈G

with the convention that 0/0 = 0. Note that E[Ĉ(G)] ≈ P (Yi < L|Xi ∈ G).

Now for deviation bounds, we make the following observations. Assume that −B/2 ≤ Yi ≤ B/2,
for i = 1, . . . , n and B > 0. Since R̂(S) is a sum of independent and bounded random variables,
Hoeffding’s inequality implies that for every δ > 0 with probability at least 1− δ

|R̂(G)−R(G)| ≤ B

√
log(2/δ)

2n

for a given set G. The deviations of the empirical constraint function (which is a “self-normalizing”
random sum) are bounded by the following lemma.

Lemma 2. Define

ε(k, δ) =

{
1 k = 0,√

log(2/δ)
2k k > 0.

Then for a set G and for all δ, P (|Ĉ(G)− C(G)| > ε(k̂, δ)) ≤ δ, where k̂ =
∑

i 1Xi∈G.

The proof of Lemma 2 is given in the appendix. Now suppose that G is a finite collection and denote
its cardinality by |G|. Then for every G ∈ G with probability at least 1− 2δ,

|R(G)− R̂(G)| ≤ B

√
log |G|+ log(2/δ)

2n

|C(G)− Ĉ(G)| ≤ ε(k̂, δ/|G|)

From here, we are almost in a position to apply these deviation bounds to Lemma 1, with the obvi-
ous identification of ε0 and ε1. However, Lemma 1 assumed fixed tolerances where as the tolerances
above are data and set dependent. Fortunately, the self-normalizing sum bound can be stated in an
essentially equivalent form where the tolerances are fixed. In addition, Lemma 1 has a counter-
part that allows for variable tolerances. We opted to present the current versions because of space
limitations.

Similar deviation bounds can be obtained if G is countable or has finite VC dimension, but since
the development of such bounds is fairly standard we do not provide details here. However, in an-
ticipation of our experimental investigation, we will discuss deviation bounds specialized to dyadic
decision trees (DDTs). Let GL denote the collection of all dyadic rectangular partitions (dyadic



decision trees) consisting of leafs/cells with side-lengths no smaller than 2−L. Let Gm
L denote the

subset of such trees with no more than m leafs. Then it is easy to show that for m sufficiently large,
the cardinality of Gm

L is no more than (8d)m, where d is the dimension of the input space [6]. It
follows that for every δ > 0 and G ∈ Gm

L with probability at least 1− 2δ

|R(G)− R̂(G)| ≤ B

√
m log(8d) + log(2/δ)

2n

|C(G)− Ĉ(G)| ≤ ε(k̂, δ/(8d)m) (1)

where m is the number of leafs/cells in G. Moreover, the same bounds hold simultaneously for all
m sufficiently large.

5 Algorithmic Considerations

Although an exact algorithm exists for direct computation of the DDT optimizing our empirical
constrained optimization problem, it is computationally demanding. Efficient optimization over
DDTs requires minimizing an unconstrained objective that is additive, meaning that it is a sum
of terms over the leaves of its argument. To obtain an unconstrained objective we minimize the
Lagrangian

min
G∈G

R̂(G) + g1Ĉ1(G) + g2Ĉ2(G) + · · ·+ gkĈk(G). (2)

The constraints are enforced by minimizing the Lagrangian in an iterative fashion, updating the
Lagrange multipliers gi in a sequential fashion by means of a bisection search strategy.

Unfortunately constraints based on self-normalizing sums are not additive. In such cases we re-
place these terms by corresponding additive terms that possess similar qualitative properties, such
as assigning smaller penalties to larger-volume trees. Note that verifying the actual constraints is
still possible at the end of each iteration. Thus, the final solution is still guaranteed to satisfy the
desired constraints to within the tolerance guaranteed by Lemma 1. On the other hand, our heuristic
relies on the unnormalized additive constraints having a similar behaviour to the self-normalizing
constraints. Thus, for some weight settings, the final risk may deviate from the optimal one by more
than the tolerance in Lemma 1.

6 Experiments

We examined the performance of the LSAT methodology when applied to the computational finance
problem outlined in Section 2.2 using a dataset derived from 90 securities belonging to the current
NASDAQ-100 index that have been actively traded since January 1999. The dataset consists of
monthly financial data over the period from January 1999 to December 2004, and comprises seven
features for each security: the change in the price-to-book ratio, the price-to-book ratio, percent
change in the volume traded, percent change in the price, change in the price-to-earnings ratio,
price-to-earnings ratio, and the price variation (differential between month-high and month-low).
The return is evaluated as the return on one dollar that is invested in the security at the start of the
month and capitalized at the end of the month (effectively the ratio between the closing price and
the opening price for the month).

We conducted experiments to determine the features that provided separation of the data. For illus-
trative purposes, we report on the results of determining LSAT sets in two dimensions corresponding
to the change-in-volume and price variation features. The dataset consists of 6212 monthly returns
(after elimination of data points due to missing or meaningless features). Training was performed
on the three-year period of 1999-2001 and testing performed on the three-year period of 2002-2004.
Figure 1(a) shows how the LSAT method can be used to reduce the risk (empirical probability of
large-loss) at the cost of reducing the average return, when compared to a portfolio comprising all
securities with equally-weighted investment or a portfolio derived by learning an unconstrained level
set. The LSAT sets meet the imposed constraints for the training data and come close to meeting
them for the test data. As shown in Figure 1(b), if the threshold U in the expected return constraint
is increased, then the portfolio generates a higher average return (up to three times the return of a
portfolio comprised of all securites), but the return is highly variable and the probability of large loss



is high. Figure 1(c) shows that the LSAT sets with large U values have small volume and identify
few investment opportunities. As the constraints are loosened, the volumes of the identified sets
increase. The unconstrained set has smaller volume than some of the constrained sets because it
minimizes the empirical risk R̂ but comes nowhere near satisfying the set-average constraint; larger
sets have greater normalizing factors and can satisfy the constraint. Figure 1(d) depicts the varia-
tion in performance over time. Although the average return of the entire test-set is approximately
constant for each year of the three-year test-period, the average returns of the LSAT sets decrease,
indicating that the learned behaviour has greater relevance in the near-term. This suggests using a
learning window and re-training prior to each investment period.

7 Conclusions
This paper introduced a new learning framework for handling LSAT problems. An application in
portfolio selection was given to motivate and explore the potential of this framework. We anticipate
many other applications for LSAT, including multi-class classification problems and false-discovery
rate analysis. An algorithm for solving LSAT problems using decision trees was presented, and fu-
ture work will be directed at the development of optimal tree-based methods as well as approaches
based on SVMs and boosting. Substantial further investigation is required to address the many prac-
tical issues of portfolio selection, but the results presented in the paper illustrate the potential of the
LSAT framework to provide solutions that effectively trade-off between the competing constraints
of risk and return.

8 Appendix

To establish Lemma 2, we prove a slightly more general result that is also of independent interest.
Theorem (Self-Normalizing Sum Bound). Let the pairs {(Zi,Wi)}n

i=1 be independent and iden-
tically distributed with a ≤ Zi ≤ b, for suitable constants a and b, and with Wi ∈ {0, 1}. Let

µ = E[Z|W = 1] and define the estimator µ̂ =
∑n

i=1
ZiWi∑n

i=1
Wi

, with the convention that 0/0 = 0.

Define

ε(k, δ) =

{
b− a k = 0,√

(b−a)2 log(2/δ)
2k k > 0.

Then for every δ > 0, P (|µ− µ̂| < ε(k̂, δ)) ≤ δ, where k̂ =
∑n

i=1 Wi.

Proof. For k > 0, E[µ̂|k̂ = k] = µ. Hoeffding’s inequality and the definition of ε(k, δ) imply

P (|µ− µ̂| > ε(k̂, δ) | k̂ = k) ≤ 2e−2kε2(k)/(b−a)2 = δ.

Therefore we have

P (|µ− µ̂| > ε(k̂, δ)) =
∑
k≥0

P (|µ− µ̂| > ε(k̂, δ) | k̂ = k)P (k̂ = k)

≤
∑
k≥0

δP (k̂ = k) = δ

This completes the proof.
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Figure 1: Performance of LSAT sets as portfolio selectors. (a) The return of sets when risk (proba-
bility of loss) is tightly controlled, showing two LSAT solutions for different settings of L with U=0.
Each line plots 5 values of p (0.96, 0.94, 0.92, 0.9, and 0.88), which appear left-to-right. For com-
parison, we include the average return of (i) all securities and (ii) those lying in the unconstrained
0.01-level set. Two points are shown corresponding to the different probabilities of large loss de-
pending on the choice of L. (b) The LSAT solutions for two cases when the U parameter in the first
constraint is increased to 0.03. The resultant sets generate highly variable returns, in some cases
outperforming the index by a factor of 3, and in other cases under-performing by a factor of 3. The
sets meet constraints for the training data, but for the test data the empirical percentages of loss are
large and not affected by the specified constraints. (c) The volumes of learned sets (measured as the
percentage of the test data lying inside the set). The high-risk, high-return U=0.03 sets have very
small volume, identifying few investment opportunities. (d) The variation of performance over time.
Based on sets learned from data over the period 1999-2001, we evaluate return separately for each
year 2002, 2003, and 2004. The results indicate that the learned behaviour is more relevant soon
after the training period.
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