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ABSTRACT

This paper describes a procedure for estimating a full set of
network path metrics, such as loss or delay, from a limited
number of measurements. The approach exploits the strong
spatial and temporal correlation observed in path-level metric
data, which arises due to shared links and stationary com-
ponents of the observed phenomena. We design diffusion
wavelets based on the routing matrix to generate a basis in
which the signals are compressible. This allows us to ex-
ploit powerful non-linear estimation algorithms that strive for
sparse solutions. We demonstrate our results using measure-
ments of end-to-end delay in the Abilene network. Our results
show that we can recover network mean end-to-end delay
with 95% accuracy while monitoring only 4% of the routes.

Index Terms— network monitoring, diffusion wavelets,
compressed sensing

1. INTRODUCTION

Direct monitoring of a network – either at the path level or
the link level – does not scale in any practical setting. For
the past decade, researchers have been actively investigating
techniques for inferring network characteristics from incom-
plete or indirect measurements [1, 2]. This paper describesa
scheme for estimating performance metrics such as delay or
loss rates on many end-to-end paths in a network using mea-
surements taken on only a few of these paths. Similar to re-
lated previous work [3, 4], we exploit the idea that, typically,
each link is used by many paths. Thus, by only measuring a
subset of paths, it is possible to infer the performance on other
unmeasured paths using knowledge of the routing topology.

Our approach combines the use of wavelets, for efficient
signal representation, with recent developments in nonlinear
estimation, for recovering a sparse signal from few measure-
ments. We usediffusion wavelets [5] to compress the path-
level performance signal into a set of sparse coefficients (only
a few coefficients have significant energy). The wavelets are
designed to specifically account for anticipated correlations
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between different path performance values, based on knowl-
edge of the network topology and routing policy. Then, we
useℓ1 optimization techniques to identify the most likely set
of sparse wavelet coefficients given measurements on a few
paths, and these estimated wavelet coefficients are used to
predict performance values on unobserved paths. In compar-
ison to the previous state-of-the-artnetwork kriging estima-
tor [4], we find that our method makes more accurate esti-
mates with few measurements on real data sets.

2. PROBLEM FORMULATION

Suppose we wish to monitor performance metrics onnp paths
in a network withnl links. Callx(k) ∈ R

nl the vector of link-
level performance metrics andy(k) ∈ R

np the vector of path-
level performance metrics at a particular time instant,k. We
assume we are given the routing matrix,G(k) ∈ {0, 1}np×nl ,

whereG(k)
i,j = 1 if and only if link j belongs to pathi. We also

assume thatx andy are linearly related via the expression

y(k) = G(k)x(k), (1)

i.e., the performance metric of a path is equal to the sum of the
performance metrics of the links comprising that path. Exam-
ples of relevant performance metrics satisfying this assump-
tion include mean delay, delay variance, and the (log) rate of
successful transmission.

In addition to the routing matrix,G, we observens met-
rics ys, on a subsets of paths (ns = |s|). Our goal is to infer
the metrics for the remainingnp − ns paths. Observations
of end-to-end metrics are made according to aselection ma-
trix A(k) ∈ {0, 1}ns×np which effectively selects the routes
that are observed (sampled); each row ofA(k) contains ex-
actly one “1” and each column contains at most one “1”. The
presence of a “1” in thepth column ofA(k) indicates we ob-
serve the performance metric on pathp. The observed sam-
ples (e.g., end-to-end delays)y

(k)
s ∈ R

ns are therefore

y(k)
s = A(k)y(k). (2)

We perform estimation of metrics over a block of mea-
surement intervals, allowing us to exploit both spatial and



temporal correlation of the path-level metrics. We denote by

y = [y(1)T
, . . . , y(τ)T ]T the vector of path-level metrics over

τ timesteps. Similarly, the corresponding link metrics are

x = [x(1)T
, . . . , x(τ)T

]T , and we introduce block-diagonal
matricesG ∈ R

npτ×nlτ andA ∈ R
nsτ×npτ , with diagonal

submatricesG(1), . . . , G(τ) andA(1), . . . , A(τ), respectively.
With this new notation we can writey = Gx, andys = AGx.
In general, routing in a network changes very slowly over
time, and unless rerouting occurs, we haveG(k) = G0 for all
k. We focus on this special case here, although incorporating
time-varying routing and load balancing is a straightforward
extension.

3. DIFFUSION WAVELETS

Wavelet transforms are a staple of modern compression and
signal processing methods due to their ability to efficiently
represent piece-wise smooth signals (signals which are smooth
everywhere, except for a few discontinuities). Traditionally,
discrete wavelet transforms provide a multi-scale decompo-
sition of functions defined on a regularly sampled interval or
grid. A “mother wavelet” is dilated by powers of two and
translated to obtain orthonormal wavelet bases. However, in
the context of network monitoring, we seek to efficiently rep-
resent a function (performance metrics) defined on a network
topology which does not, in general, have a regular structure,
so standard wavelets cannot be directly applied. Crovella and
Kolaczyk [6] describe one method of constructing wavelets
on a graph for decomposing traffic on an arbitrary topology
based on dilating and scaling a mother wavelet, similar to
the traditional approach. The primary shortcoming of this ap-
proach is that it does not lead to an orthogonal basis, limiting
its use as a mechanism for generating a compressible repre-
sentation of a network function. More recently, Coifman and
Maggioni [5] have introduced diffusion wavelets, generaliz-
ing the concept of wavelets to functions supported on a graph
through the use of diffusion operators.

The construction of a diffusion wavelet basis is based on
a diffusion operator,D, defined on the support of the under-
lying graph. For a graph withn nodes,D is ann × n matrix
whereDi,j > 0 if and only if there is a link between nodes
i andj. The magnitude ofDi,j models the strength of the
correlation or similarity between the function values at nodes
i andj. Much like traditional wavelets, diffusion wavelets re-
cursively split the space over which the signal is observed into
smaller, orthogonal subspaces. Consider a functionf ∈ R

n

defined on a network ofn nodes, wherefi corresponds to the
value at nodei; the function is initially defined on the space
V0 = R

n. At scalej = 1, . . . , L, for some pre-specified
depthL, the diffusion wavelet construction recursively splits
the spaceVj into a scaling subspace,Vj+1, and a wavelet
subspace,Wj+1, by analyzing eigenvectors of thejth dyadic
power of the diffusion operator,D2j . The matrixD2j is, intu-

itively, related to averaging or smoothing over neighborhoods
of radius2j hops in the original graph, and the study of eigen-
vectors of this matrix is analogous to Fourier spectral analy-
sis on a regular space. The ensuing orthonormal wavelet ba-
sis, adapted to the representation of the data (function values)
over the graph, is obtained by concatenating bases forVL and
the wavelet subspaces,{Wj}

L
j=1. We refer the reader to [5]

for the precise details of the construction.
Let Bj ∈ R

n, j = 1, . . . , n, denote the final collection of
orthonormal wavelet basis vectors. A function on the graph
can be represented as a vectory ∈ R

n, whereyi is the value
at theith node, and the wavelet decomposition ofy is given
by y =

∑n

j=1 βjBj , whereβj = yT Bj is the jth wavelet
coefficient. Stacking the coefficients,βj , into a vector,β,
and concatenating the basis vectors,{Bj} into ann × n ma-
trix, B, we can writey = Bβ. In the following section we
propose a diffusion operatorD designed such that the corre-
sponding wavelet representation of a path performance vec-
tor, y, is highly compressed; i.e., most of the energy iny can
be captured in a fewβj . To be more precise, let us rearrange
the wavelet coefficients in order of decreasing magnitude so
that

|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(n)|,

and define the bestm-term approximation ofy in B to be
ŷ(m) =

∑m

j=1 β(j)B(j). We say thaty is compressible inB

when the approximation error‖y − ŷ(m)‖ decays rapidly as
a function ofm, meaning thaty is efficiently represented us-
ing only a few basis vectors,B(1), . . . , B(m). In this case,
we only really need to estimate values of the few large coeffi-
cients in order to obtain a high quality estimate of end-to-end
performance on many paths. Moreover, in this setting we can
make use of recent breakthroughs in the area of non-linear es-
timation of compressible functions to quantify the number of
paths that need to be measured to obtain estimates of perfor-
mance at a specified level of accuracy.

4. COMPRESSIBLE REPRESENTATIONS

In order to construct a compressible representation, we de-
velop a diffusion wavelet basis where the diffusion operator
is related to the anticipated correlation between link metrics.
We first define the graph of interestG = (V , E). We are mea-
suring (weighted sums of) a performance metric function de-
fined on the physical links of the network. Accordingly, the
vertex setV for our diffusion wavelet basis has one vertex for
each link at each timestep:V(k) = {v

(k)
i }, over the estimation

intervalk = 1, . . . , τ .
The edges in the graph model correlation and their associ-

ated weights define the diffusion operator. We form the edge
setE by inserting two types of edges into the graph. We add a
spatial-correlation edge between the verticesv

(k)
i andv

(k)
j if

there is at least one route in the network that uses both linksi



andj during time intervalk. We assign a weightw(v
(k)
i , v

(k)
j )

to this edge to model the spatial correlation. Denote byRi the
set of paths that use linki. We set

w(v
(k)
i , v

(k)
j ) =

|Ri ∩Rj |

|Ri ∪Rj |
, (3)

thereby assigning greater weights to edges that join network
links which have more routes in common. We also add a
temporal-correlation edge between verticesv(k)

i andv
(k+1)
i

for k = 1, . . . , τ − 1, reflecting the idea that performance of
a link at one timestep is a good predictor for the same link at
the next timestep. We assign a weightw(v

(k)
i , v

(k+1)
i ) = c

to these edges, wherec > 0 is a constant that is adjusted ac-
cording to the (anticipated) relative strength of temporalcor-
relation. In this paper, we setc = 0.5, because we anticipate
strong correlation.

The diffusion wavelet procedure in [5] requires a diffu-
sion operatorD to generate a wavelet representation overG.
To obtain a diffusion operatorD from the construction de-
scribed above, we apply Sinkhorn balancing [7] to the matrix
of weights,[w], to form a doubly stochastic matrix.

5. NON-LINEAR ESTIMATION

Now, suppose we have made observationsys of the end-to-
end performance for a subset of the paths we are interested
in, and we wish to estimatey. We haveys = Ay, where
A is the selection matrix, indicating which paths we observe
directly.

Our estimation procedure is based on the belief that the
link metrics are highly compressible when represented using
the diffusion wavelet basisB. Call β the link metrics coeffi-
cients in the diffusion wavelet basisB, such thatx = Bβ.

We can expressy in terms of its wavelet coefficients as
y = GBβ, where most of the energy iny is captured in a few
entries ofβ. Combining this expression with the expression
for ys above leads toys = AGBβ. In this formulation, we
have a strong prior belief thatβ has only a few large entries,
with most being very small in magnitude or even zero. This
motivates the adoption of estimation strategies that produce
sparse estimates.

A straightforward approach to obtaining a sparse estimate
of β is to solve anℓ0 optimization of the form:

β̂ = arg min
β

‖β‖0 subject toys = AGBβ,

where‖β‖0 counts the number of non-zero entries ofβ. It
is well known that this problem is NP-hard, requiring one to
enumerate all possible subsets of non-zero coefficients.

It has recently been shown that the solution to a simpler
ℓ1 optimization problem,

β̂ = arg min
β

‖β‖1 subject toys = AGBβ, (4)

Fig. 1. Abilene backbone: 11 nodes, 30 (unidirectional) links.

is equivalent to theℓ0 problem if certain conditions onA,
GB, andβ are satisfied [8–10]. Here,‖β‖1 =

∑n

i=1 |βi|.
Because theℓ1 optimization (4) is convex, it is computation-
ally tractable, and a solution can be obtained using linear pro-
gramming.

6. PATH SELECTION

So far, we have discussed why and how it is possible to esti-
mate accurately end-to-end metrics from a limited number of
observations. However, we have not discussed how to choose
the path selection matricA, that is, select thens routes which
should be observed. This problem is challenging and the ap-
propriate approach depends on the measurement constraints
or costs. Here, we consider that the cost (or constraint) is the
number of measurements made per timestep. It thus does not
matter here which paths we measure. For example, if we are
allowed one observation per timestep, then we can measure
the same route every timestep or we can measure a different
route every timestep.

We adapt the path selection technique presented by Chua
et al. in [4] to include our correlation model. The path se-
lection procedure in [4] strives to minimize the mean square
of the prediction error of a linear end-to-end delay estima-
tor. The exact minimization procedure is NP-complete (it
amounts to the problem of subset selection) and hence heuris-
tics are needed.

Chua et al. propose a heuristic that consists of finding the
rows of the routing matrixG that approximate the span of the
first ns left singular vectors ofGC, whereC is a nonsingu-
lar matrix that satisfiesΣ = GC andΣ is the covariance of
x. Note that the estimation methodology in [4] is restricted to
metrics of the formy = Gx, which leads to the incorporation
of a link-level covariance matrix in this path selection proce-
dure. In the case where this covariance matrix is not known,
reasonable results can be often by obtained by settingΣ = I.
An algorithm (see Alg. 1) that implements this heuristic can
be found in [11].

The intuition behind this heuristic is that most of the en-
ergy of the path metric signal should reside in the space
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Fig. 2. Link delays for the complete network over 8 timesteps,
sorted by magnitude, in the original basis and in the diffusion
wavelet basis.

spanned by thens left singular vectors ofGC. Identifying
a set of paths that approximately span this space is thus a de-
sirable goal.

Here, we use as the covarianceΣ = Dτ (recallD is the
diffusion operator andτ the number of timesteps used to ac-
count for time-correlation), and thus selection is performed
by Alg. 1 where the input matrixMi is equal toGC.

Algorithm 1 path selection
Input: MatrixMi

Number of paths to selectns

Output: Selection matrixA

1: Perform SVD onMi: Mi = USV T whereS contains
the singular values ofG, in descending order.

2: Perform QR decomposition with column pivoting on the
first ns columns ofU : QR = UT

(1,...,ns)P
T .

3: ReturnA = P(1,...,ns), the matrix formed from the first
ns columns ofP .

7. NUMERICAL RESULTS

To illustrate the estimation technique presented in this paper,
we use experimental delay data collected on the Abilene back-
bone network depicted in Fig. 1. The network consists of
11 nodes and 30 unidirectional links. Mean end-to-end delay
measurements are collected between every pair of nodes over
48 five-minute intervals. There are thus121 path metrics to
be estimated at each time step.

We first verify the compressibility of the data. Fig. 2
shows the delays for all links and the absolute values of the
diffusion wavelet coefficients, overτ = 8 timesteps, sorted
in descending order. The decay of the delays expressed in the
original basis is very slow and exhibits a heavy tail, whereas
in the diffusion wavelet basis, the decay is much faster.

Figure 3 compares the performance of the proposed tech-
nique (nonlinear estimation in the diffusion wavelet basis)
with network kriging, the current state-of-the-art estimation
technique for network end-to-end metrics [4]; network krig-
ing uses an eigenbasis formed using the routing matrix and
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Fig. 3. Top panel: Relative mean end-to-end delay error (top) and
relativeℓ2-norm error (bottom) as functions of the average number
of measurements per timestep.

linear (MMSE) estimation. We estimate the average end-to-
end delay over the entire network,〈y〉 = 1

npτ

∑np

i=1 yi, and
the individual delays of all paths. Estimation is performed
for τ = 1 andτ = 8 for a total of 48 timesteps and 5% confi-
dence intervals are depicted. We assess performance based on
the relative mean end-to-end delay error〈|y − yest|〉/〈y〉 and
the relativeℓ2-norm error‖y − yest‖ℓ2/‖y‖ℓ2. We provide
results for the single timestep case (τ = 1), where only spa-
tial correlation between the routes is accounted for, and the
multi timestep case (τ = 8) where both spatial and temporal
correlations are accounted for. In each case, we built a dif-
fusion wavelet basis with the maximum depth allowed by the
numerical approximations used in the construction procedure:
L = 10 for τ = 1 andL = 11 for τ = 8.

In general, accounting for time correlation decreases the
estimation error, but the improvement is marginal and not uni-
versal, Since there is substantial temporal correlation inthe
data, this suggests that there is room for improvement in how
our methodology incorporates temporal correlation informa-
tion. When less than10 samples per timestep are collected,
non-linear estimation in a diffusion wavelet basis using tem-
poral correlation information exhibits much lower estimation
error than the linear estimator. Our results suggest that by
making only5 measurements per timestep (4% of the net-
work paths) we can hope to recover the mean network end-
to-end delay with an error of less than5%. Fig. 4 shows the
recovered end-to-end delay over time for two example paths.
We see that linear estimation exhibits substantial bias. Incon-
trast, the nonlinear estimator exhibits much less bias but more
variability, an artifact induced by the utilization of diffusion
wavelet bases.
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Fig. 4. Comparison between non-linear estimation and linear esti-
mation of path delays for two example paths.

8. DISCUSSIONS AND FUTURE WORK

In this paper we focused on developing a compressible repre-
sentation for the case where we know that performance on a
path is the sum of performances on links, but we do not nec-
essarily need to make this assumption. When this is not true,
we can still apply the same methodology. As long as we have
some prior information about how performance on different
paths is correlated, we can design a diffusion wavelet basis
to compress the path performance signal. We have applied
our framework to a specific example (end-to-end delay esti-
mation in a network whose topology is known) and showed
that the observation of only a few sample end-to-end delays
was sufficient to recover most of the information regarding
the unobserved end-to-end delays. In particular, we showed
that our technique outperformed network kriging, which uses
linear estimation. Our technique is very general and can be
applied to many different setups. For instance, see [12] for
more on applying the methodology described in this paper to
estimate quality of service metrics in all-optical networks.

There are three key components to the network monitor-
ing framework described in this article: 1) a compressing
transformation to sparsify the target signal, 2) a nonlinear es-
timation scheme which favors sparse solutions, and 3) a path
selection algorithm for determining the optimal monitoring
strategy. Our ongoing work involves refining each of these
components. More specifically, we report here that diffusion
wavelets provide a compressing transformation, but the re-
sulting estimates have oscillatory artifacts due to the nature
of the diffusion wavelet basis. We are currently investigat-
ing the use of alternative sparsifying transformations such as

graph wavelets [6] and a novel multi-scale decomposition on
graphs inspired by Haar wavelets. Similarly, we are experi-
menting with alternative nonlinear estimators and approaches
to path selection. Last, our framework was validated using
data from the Abilene backbone network. Investigating theo-
retical performance bounds for our framework is a interesting
and challenging extension to this work.
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