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ABSTRACT between different path performance values, based on knowl-

This paper describes a procedure for estimating a full set quge of the_net_vvork topqlogy anq rou_tlng policy. Then, we
network path metrics, such as loss or delay, from a Iimited"seﬂl optimization techniques to identify the most likely set

number of measurements. The approach exploits the strorfy SParse wavelet coefficients given measurements on a few

spatial and temporal correlation observed in path-levétime paths, and these estimated wavelet coefficients are used to

data, which arises due to shared links and stationary con?—rEdiCt performance values on unobserved paths. In compar-

ponents of the observed phenomena. We design diffusioio to the previous state-of-the-atwork kriging estima-

wavelets based on the routing matrix to generate a basis i [4], we find that our method makes more accurate esti-

which the signals are compressible. This allows us to ex[nates with few measurements on real data sets.

ploit powerful non-linear estimation algorithms thatarfor

sparse solutions. We demonstrate our results using measure 2. PROBLEM FORMULATION

ments of end-to-end delay in the Abilene network. Our result

show that we can recover network mean end-to-end dela§uppose we wish to monitor performance metricappaths
with 95% accuracy while monitoring only 4% of the routes. in a network withn, links. Callz(*) € R™ the vector of link-
level performance metrics and®) € R"» the vector of path-
level performance metrics at a particular time instant\e
assume we are given the routing mata¥¥) e {0, 1}m>",
WhereGEf“j) = lifand onlyiflink j belongs to path. We also
assume that andy are linearly related via the expression

Index Terms— network monitoring, diffusion wavelets,
compressed sensing

1. INTRODUCTION

Direct monitoring of a network — either at the path level or (k) — (k) 5 (k) 1
, . . . yr =GVt (1)
the link level — does not scale in any practical setting. For

the past decade, researchers have been actively invesjigati.e., the performance metric of a path is equal to the sumeof th
techniques for inferring network characteristics fromame  performance metrics of the links comprising that path. Exam
plete or indirect measurements [1, 2]. This paper descabesples of relevant performance metrics satisfying this agsum

scheme for estimating performance metrics such as delay @bn include mean delay, delay variance, and the (log) rate o
loss rates on many end-to-end paths in a network using meggccessful transmission.

surements taken on only a few of these paths. Similar to re- |n addition to the routing matrix, we observe:, met-

lated previous work [3, 4], we exploit the idea that, typigal rics y,, on a subset of paths ¢, = |s|). Our goal is to infer
each link is used by many paths. Thus, by only measuring ghe metrics for the remaining, — n, paths. Observations
subset of paths, it is possible to infer the performanceberot of end-to-end metrics are made according telaction ma-
unmeasured paths using knowledge of the routing topology.trix A*) ¢ {0, 1}™<*"» which effectively selects the routes
Our approach combines the use of Wavelets, for eﬁiCienﬂ']at are observed (Samp|ed), each rovmf) contains ex-
signal representation, with recent developments in neafin actly one “1” and each column contains at most one “1”. The
estimation, for recovering a sparse signal from few measurgyresence of a “1” in the™ column of A%) indicates we ob-
ments. We useliffusion wavelets [5] to compress the path- serve the performance metric on pathThe observed sam-

level perfor.m.ance signal ?ntq a set of sparse coefficiemty (o ples (e.g., end-to-end delay,éf) c R are therefore
a few coefficients have significant energy). The wavelets are

designed to specifically account for anticipated correfsti ygk) = ARy, 2)
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temporal correlation of the path-level metrics. We dengte bitively, related to averaging or smoothing over neighbad®

y= [y(l)T, e y(T)T]T the vector of path-level metrics over Of radius2;j hopsin the original graph, and the study of eigen-
T timesteps. Similarly, the corresponding link metrics arevectors of this matrix is analogous to Fourier spectralynal
. [:c(1>T :c(T)T]T and we introduce block-diagonal sis on a regular space. The ensuing orthonormal wavelet ba-
matrices ’E R;WX,”T émdA € R™7*m with diagonal sis, adapted to the representation of the data (functiaregl

G andAW), ... A", respectively. over the graph, is obtained by concatenating baseg; fend

submatrice&g(™ . . .,
the wavelet subspace§lV; le. We refer the reader to [5]

With this new notation we can writg= Gz, andy;, = AGx. : ) .
In general, routing in a network changes very slowly oveljor the precise de.ta|ls of the constructlon._ _

time, and unless rerouting occurs, we h&#é&) = G, for all Let B; € R, j =1,...,n, denote the final collection of

k. We focus on this special case here, although incorporatin%rthonormal wavelet basis vectors. A function on the graph

time-varying routing and load balancing is a straightfamva ©@" beﬂ:epresented as a veqjoe R, Where.y?- IS the \{alue
extension. at thes™ node, and the wavelet decompositionyois given

byy = 37, 8;B;, where; = y” B; is the jth wavelet

coefficient. Stacking the coefficients;, into a vector,g,
3. DIFFUSION WAVELETS and concatenating the basis vectdiB, } into ann x n ma-

trix, B, we can writey = Bf. In the following section we

Wavelet transforms are a staple of modern compression adtioPose a diffusion operatd? designed such that the corre-
signal processing methods due to their ability to efficient! SPONding wavelet representation of a path performance vec-
represent piece-wise smooth signals (signals which aretsmo tOF: ¥: i highly compressed; i.e., most of the energy ican
everywhere, except for a few discontinuities). Traditibpa P€ captured in a few;. To be more precise, let us rearrange
discrete wavelet transforms provide a multi-scale decompc}he wavelet coefficients in order of decreasing magnitude so
sition of functions defined on a regularly sampled interval o that

grid. A “mother wavelet” is dilated by powers of two and

translated to obtain orthonormal wavelet bases. Howener, i Bl = 1Byl = - 2 1B,

the context of network monitoring, we seek to efficiently-rep
resent a function (performance metrics) defined on a netwo
topology which does not, in general, have a regular stregtur e N .
so standard wavelets cannot be directly applied. Crovalta a when the apprOX|mat!on err¢|rg./ - y.(w.l)” decays rapidly as
Kolaczyk [6] describe one method of constructing waveletd function ofm, meaning thay is efficiently represgnted us-
on a graph for decomposing traffic on an arbitrary topolog;}ng only a few basis vect_orsB(l), - B In this case, '
based on dilating and scaling a mother wavelet, similar tgve onl_y really need to_eshm_ate valu_es of f[he few large coeffi-
the traditional approach. The primary shortcoming of tipis a cients in order to obtain a high quality es_t|ma_te of gndﬂd-e
proach is that it does not lead to an orthogonal basis, lgiti performance on many paths. Morepver, in this settmg_we can
its use as a mechanism for generating a compressible repl%‘-ak‘? use of recent b(eakthrou_ghs in the area of non-linear es
sentation of a network function. More recently, Coifman and’'mation of compressible functions to quantify the numbder o

Maggioni [5] have introduced diffusion wavelets, genarali paths that need to be measured to obtain estimates of perfor-

ing the concept of wavelets to functions supported on a grap'ﬁlance at a specified level of accuracy.

through the use of diffusion operators.

The construction of a diffusion wavelet basis is based on 4. COMPRESSIBLE REPRESENTATIONS
a diffusion operatorD, defined on the support of the under-
lying graph. For a graph with nodes,D is ann x n matrix ~ In order to construct a compressible representation, we de-
whereD; ; > 0 if and only if there is a link between nodes velop a diffusion wavelet basis where the diffusion operato
i andj. The magnitude oD; ; models the strength of the is related to the anticipated correlation between link rogtr
correlation or similarity between the function values ales e first define the graph of interegt= (V, £). We are mea-
i andj. Much like traditional wavelets, diffusion wavelets re- suring (weighted sums of) a performance metric function de-
cursively split the space over which the signal is obsergeali  fined on the physical links of the network. Accordingly, the
smaller, orthogonal subspaces. Consider a funcfienR™  vertex sed’ for our diffusion wavelet basis has one vertex for
defined on a network of nodes, wherg; corresponds to the €ach link at each timestep:*) = {v{"}, over the estimation
value at node; the function is initially defined on the space intervalk = 1,...,7.
Vo = R™. Atscalej = 1,...,L, for some pre-specified The edges in the graph model correlation and their associ-
depthL, the diffusion wavelet construction recursively splits ated weights define the diffusion operator. We form the edge
the spacel; into a scaling subspacé.;, and a wavelet set€ by inserting two types of edges into the graph. We add a
subspacelV;1, by analyzing eigenvectors of théh dyadic  spatial-correlation edge between the verticegc) andvﬁk) if
power of the diffusion operatoR?’. The matrixD?/ is, intu-  there is at least one route in the network that uses both{inks

ind define the besh-term approximation ofy in B to be
Fim) = >y B Bj)- We say thay is compressible i3



andj during time intervak. We assign aweightz(vgk) , v§k))
to this edge to model the spatial correlation. Denot®&byhe
set of paths that use link We set

® k) _ IRiNR|
w(vi ’vj ) - |R7, U lev (3)
thereby assigning greater weights to edges that join n&twor
links which have more routes in common. We also add a
temporal-correlation edge between verticeék) and vgk“)
fork =1,...,7 — 1, reflecting the idea that performance of
a link at one timestep is a good predictor for the same link at
the next timestep. We assign a weigb(tvf“,vf*”) =c
to these edges, wheee> 0 is a constant that is adjusted ac-
cording to the (anticipated) relative strength of tempomat  is equivalent to the/y problem if certain conditions on,
relation. In this paper, we set= 0.5, because we anticipate GB, and (3 are satisfied [8—-10]. Herd|5|y = Y., |5il.
strong correlation. Because thé; optimization (4) is convex, it is computation-

The diffusion wavelet procedure in [5] requires a diffu- ally tractable, and a solution can be obtained using linea+ p

sion operatolD to generate a wavelet representation @yer gramming.
To obtain a diffusion operatab from the construction de-
scribed above, we apply Sinkhorn balancing [7] to the matrix
of weights,[w], to form a doubly stochastic matrix.

Fig. 1. Abilene backbone: 11 nodes, 30 (unidirectional) links.

6. PATH SELECTION

So far, we have discussed why and how it is possible to esti-
5. NON-LINEAR ESTIMATION mate accurately end-to-end metrics from a limited number of
_ observations. However, we have not discussed how to choose
Now, suppose we have made observatignsf the end-10- 1o hath selection matri¢, that is, select the,, routes which
end performance for a subset of the paths we are interestel, i pe observed. This problem is challenging and the ap-
in, and we wish to estimatg. We havey, = Ay, where o oiate approach depends on the measurement constraints
A_ is the selection matrix, indicating which paths we observe, oqqyq Here, we consider that the cost (or constrainieis t
directly. _ _ number of measurements made per timestep. It thus does not
Our estimation procedure is based on the belief that thg, 5 er here which paths we measure. For example, if we are
link metrics are highly compressible when representedqusingo\wed one observation per timestep, then we can measure
the diffusion wavelet basif. Call § the link metrics coeffi- e same route every timestep or we can measure a different
cients in the diffusion wavelet basi3, such thatr = Bg. route every timestep.

_Vée can (ra]xpresg n t?rrr]r]s of its vyayelet coefélt_:lentfs as We adapt the path selection technique presented by Chua
y = GBf, where most of the energy inis captured inafew o4 5 in [4] to include our correlation model. The path se-

entries of. Combining this expression with the expression;q o, procedure in [4] strives to minimize the mean square

Lor ys above Iea(_js tgsl.:f ﬁGﬁﬂ' In lthlsfforn;ulanon, WE  of the prediction error of a linear end-to-end delay estima-
ave a strong prior belief thathas only a few large entries, , 1he exact minimization procedure is NP-complete (it

W'th. most being very small in .mag.nltude or even zero. Th'samounts to the problem of subset selection) and hence heuris
motivates the adoption of estimation strategies that predu ;. 4re needed

sparse es_t|mates. - . Chua et al. propose a heuristic that consists of finding the
A straightforward appr_oa(_:h to obtaining a sparse eStImatPows of the routing matrix; that approximate the span of the
of 3 is to solve art, optimization of the form: first n, left singular vectors offC, whereC is a nonsingu-
lar matrix that satisfieX = GC andX is the covariance of
x. Note that the estimation methodology in [4] is restricted t
] metrics of the fornmy = Gz, which leads to the incorporation
where||3]|o counts the number of non-zero entries(f It of a link-level covariance matrix in this path selection gge
is well known that this problem is NP-hard, requiring one togure. In the case where this covariance matrix is not known,
enumerate all possible subsets of non-zero coefficients.  reasonable results can be often by obtained by sefting!.
It has recently been shown that the solution to a simplepn algorithm (see Alg. 1) that implements this heuristic can
¢, optimization problem, be found in [11].
~ ) , The intuition behind this heuristic is that most of the en-
g = arg“}gm”ﬁHl subjecttoy; = AGBB,  (4)  ergy of the path metric signal should reside in the space

B = argmﬁin I8lo subject toy, = AGBg,
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Fig. 2. Link delays for the complete network over 8 timesteps,
sorted by magnitude, in the original basis and in the diffosi
wavelet basis.
spanned by the, left singular vectors of>C'. ldentifying
a set of paths that approximately span this space is thus a d

sirable goal.

Here, we use as the covariance= D7 (recall D is the
diffusion operator ane the number of timesteps used to ac-
count for time-correlation), and thus selection is perfedm
by Alg. 1 where the input matri®/; is equal toGC.

Number of samples per timeste

Fig. 3. Top panel: Relative mean end-to-end delay error (top) and
relative/>-norm error (bottom) as functions of the average number
of measurements per timestep.

Algorithm 1 path selection

Input:  Matrix M; linear (MMSE) estimation. We estimate the average end-to-

Number of paths to seleet, end delay over the entire networly) = -1 >""" v, and

Output: Selection matrid the individual delays of all paths. Estimation is performed

1. Perform SVD onM;: M; = USV" whereS contains  for 7 — 1 andr = 8 for a total of 48 timesteps and 5% confi-
the singular values af, in descending order. dence intervals are depicted. We assess performance based o
2: Perform QR decomposition with column pivoting on the the relative mean end-to-end delay erflor— yes|)/(y) and
firstns columns ofU: QR = U(T12...,nS)PT- ~ the relatively-norm error||y — Yestlle,/||y|le,- We provide
3 ReturnA = Py, n,), the matrix formed from the first regyits for the single timestep case< 1), where only spa-
ns columns ofP. tial correlation between the routes is accounted for, aed th
multi timestep caser(= &) where both spatial and temporal
correlations are accounted for. In each case, we built a dif-
7. NUMERICAL RESULTS fusion yvavelet ba_sis With the ma_lximum depth a_llowed by the
numerical approximations used in the construction procedu

To illustrate the estimation technique presented in thiepa L = 10for 7 =1andL = 11 for 7 = 8.
we use experimental delay data collected on the Abilene-back In general, accounting for time correlation decreases the
bone network depicted in Fig. 1. The network consists ofstimation error, but the improvementis marginal and nét un
11 nodes and 30 unidirectional links. Mean end-to-end delayersal, Since there is substantial temporal correlatiotinén
measurements are collected between every pair of nodes owdaita, this suggests that there is room for improvementin how
48 five-minute intervals. There are thug1 path metrics to  our methodology incorporates temporal correlation infarm
be estimated at each time step. tion. When less tham0 samples per timestep are collected,
We first verify the compressibility of the data. Fig. 2 non-linear estimation in a diffusion wavelet basis using-te
shows the delays for all links and the absolute values of thporal correlation information exhibits much lower estimoat
diffusion wavelet coefficients, over = 8 timesteps, sorted error than the linear estimator. Our results suggest that by
in descending order. The decay of the delays expressed in theaking only5 measurements per timesteff( of the net-
original basis is very slow and exhibits a heavy tail, whereawork paths) we can hope to recover the mean network end-
in the diffusion wavelet basis, the decay is much faster. to-end delay with an error of less thaf. Fig. 4 shows the
Figure 3 compares the performance of the proposed techecovered end-to-end delay over time for two example paths.
nigue (nonlinear estimation in the diffusion wavelet bpasis We see that linear estimation exhibits substantial biasoin
with network kriging, the current state-of-the-art estiima  trast, the nonlinear estimator exhibits much less bias louem
technique for network end-to-end metrics [4]; network krig variability, an artifact induced by the utilization of diffion
ing uses an eigenbasis formed using the routing matrix andlavelet bases.
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graph wavelets [6] and a novel multi-scale decompaosition on
graphs inspired by Haar wavelets. Similarly, we are experi-

menting with alternative nonlinear estimators and apgreac

to path selection. Last, our framework was validated using
data from the Abilene backbone network. Investigating theo
retical performance bounds for our framework is a intengsti
and challenging extension to this work.
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