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Abstract

Thefundamentabbjectiveof this work is to determinethe extent
to which unicast,end-to-enchetworkmeasuementis capableof
determininginternal networklosses. The major contributions of
this paperare two-fold: we formulatea measuementprocedue
for networklossinferencebasedon end-to-endpadket pair mea-
surementsandwedevelopa statisticalmodelingand computation
framevorkfor inferring internalnetworklosscharacteristics.Sim-
ulation experimentsdemonstate the potential of our new frame-
work.

1. Introduction

In large-scaleetworks,end-systemsannotrely onthenet-
work itself to cooperaten characterizingts own behavior.
This has promptedseveral groupsto investigatemethods
for inferring internalnetwork behavior basedn end-to-end
network measurementfd, 2, 3, 4, 5, 6]; the so-callednet-
work tomaggraphy problem. While promising,thesemeth-
ods require specialsupportfrom the network in terms of
either cooperationbetweenhosts, internal network mea-
surementspr multicastcapability Many networks do not
currentlysupportmulticastdueto its scalabilitylimitations
(routersneedto maintainper group state),andlack of ac-
cesscontrol. Moreover, multicast-basednethodsmay not
provide anaccuratecharacterizationf thelossratesfor the
traffic of interestbecauseouterdreatmulticastpacletsdif-
ferentlythanunicastpaclets.

In this paper we introducea new methodologyfor net-
work tomography(specifically inferring pacletlossproba-
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bilities oninternalnetwork links) basednunicastmeasure-
ment. In contrasto multicasttechniquesunicastinference
is easilycarriedout on mostnetworks andis scalable.Our
approactemploys unicast,end-to-endneasuremerdf sin-
gle paclet and back-to-backpaclet pair losseswhich can
be performedactively or passiely. By back-to-backpaclet
pairswe meantwo pacletsthataresentoneafterthe other
by the source possiblydestinedfor differentrecevers,but
sharingacommonsetof links in theirpaths.Throughouthe
remaindenf thepapemework with “success’probabilities
(probability of non-loss)insteadof lossprobabilities. This
providesa morecornvenientmathematicaparameterization
of the problem, and the probability of lossis simply one
minusthe probability of success.

The use of back-to-backpaclet pair measurementss
motivatedby the following reasoning.If two back-to-back
pacletsaresentacrosslink andthefirst pacletis receved,
thenit is highly likely thatthesecondpacletwill alsobere-
ceived. We expectthat the conditionalsuccesgprobability
of the secondpaclet (given that the first is receved) may
oftenbecloseto one. This obsenationhasbeenverifiedex-
perimentallyin realnetworks[7] andcanalsobeestablished
theoreticallyjunderan M/M/1/K queuemodel[8]. Exploit-
ing this correlationbetweerback-to-baclkpacletlosseswe
develop a framework for the statisticalestimationof inter
nalsuccesgrobabilitiesbasedsolelyonunicastend-to-end
measurementIn our simulatedexperiments,we are able
to obtain accurateloss estimateseven in caseswherethe
conditionalsuccesgrobabilitiesare significantlylessthan
one(e.g., conditionalsucces@robabilitiesof 0.9, whichare
lower thantypical measurementsn the Internet).

The inherentstructureof networks makesthis problem
ideally suited to the new field of factor graph analysis.
Factorgraphsenableus both to visualizethe relationships
betweenstatisticsand network parametersandto greatly
simplify the tomographyproblem through both probabil-



ity factorizationrandmessag@assingalgorithms[9]. These
graphicalmodelsenablevery efficient andscalableestima-
tion algorithms. In fact, the complexity of our algorithms
grows linearly with the numberof nodesn the network un-
derstudy A key strengthof our methodologyis thatit can
deliver not only point estimatesand confidenceintervals,
but alsoprobability distributionsfor network parametersf

interest.This providesthe completecharacterizatiowof the
accurag andreliability of inferred network behavior that
is necessaryor modeling,maintenanceandserviceprovi-

sioning.

Thepaperis organizedasfollows. In Section2, weintro-
ducethe basicunicasttomographyproblemandthetechni-
calissuednvolved.In Sections3 and4, we formally define
our loss modeling assumptionsand measurementrame-
work. Section5 describesseveral basic statisticalinfer-
encetasksinvolved in unicasttomography In Section6,
we proposetwo novel inferencealgorithms,both of which
are basedon the notion of “unobsened data” and lik eli-
hood factorization. Section7 investigateghe consisteng
andbiasof our inferencealgorithms. In Section8, we ex-
aminethe performancef our methodghroughsimulation,
andconcludingremarksaremadein Section9.

2. UnicastTomograply

We considerascenaridn which asinglesourcesendpack-
etsto anumberof recevers(extensiongo multiple sources
arepossible).In this case the network topology (from the
perspectie of the source)is a tree-structure Figure 2. de-
picts an exampletopology with source(node0) and eight
recevers(nodes throughl3). Also shawvn arefiveinternal
routers(nodesl through5). We assumehat we are able
to measurenetwork traffic only at the edge;thatis, we can
determinewhetheror not a packet sentfrom the sourceis
successfullyreceved by oneof therecevers. This type of
confirmationcan be obtainedvia TCP’s acknavledgment
systemfor example.We alsoassumehattheroutingtable
is fixedfor the durationof the measuremergrocesswhich
ensureshetree-structuredopology

Thegoalof thiswork is to estimatehelossprobabilities
associatedvith eachindividual link (betweentwo routers)
in the network. Here,we usethe term path or subpathto
referto a connectionthroughtwo or moreroutersandlink
to referto a single, direct connectiorbetweentwo routers.
Restrictingoursehesto edge-basedneasurementye can
measurehenumbersf pacletssentto andreceivedby each
recever, providing uswith asimplemeansf estimatinghe
probabilitiesof succesalongeachpath(from sourceto re-
ceiver). Unfortunately thereis no uniquemappingof the
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Figure 1 — Tree-structured graph representing a single-
sour ce, multiple-receiver netw ork.

pathsuccesgrobabilitiesto the succesgrobabilitiesonin-
dividual links (betweenrouters)in the path. To overcome
this difficulty, we proposea methodologybasedon mea-
surementsmade using back-to-backpaclet pairs. These
measuremenisrovide anopportunityto collectmoreinfor-
mative statisticshatcanhelpto resole thelinks.

The basicideaemployed hereis quite straightforvard.
Supposethat we sendtwo, closely time-spacedback-to-
back)pacletsfrom the sourcewith thefirst packetdestined
for recever: andthe secondfor recever j. The pathstra-
versedy the pacletssharesomecommonsubpatrandthen
diverge at somepoint. For example,referringto Figure?2.,
suppost¢hefirst pacletis destinedor node6 andthesecond
for node7. Thenthetwo packetssharea commonsubpath
up to node4. Now, if thefirst paclet is receved at node
6, thenit is highly likely that both paclkets were receved
at node4 (sincethey were closelytime-spaced).Thus, if
thesecondpacletis notrecevedatnode?, thenwe cande-
ducethatit wasprobablydroppednthelink from node4 to
7. Repeatinghis paclet-pairmeasurememumeroudimes
and recordingthe numberof dropsof the secondpaclet
(whenthe first paclet is receved), we canisolatethe loss
rateonthe4-7 link.

Collecting measurementfrom an assortmeniof such
back-to-baclpaclet pairs(sentto differentcombinationf
recevers) allows us to resole the lossesoccurringon all
links in the network. The key to this approachis the ex-
ploitation of the correlationbetweenpaclet-pairlosseson
commonsubpaths.

In this paperwe examineseveralissuesvhichin thefol-
lowing sectionsincluding: developing scalableestimation
algorithmsthat areapplicableto large networks; the sensi-
tivity of the estimationprocedurdo casesn which the cor-
relationbetweerpaclket-pairlosseson commonsubpathss



imperfect;andcharacterizationf achievableestimatiorac-
curag from limited numbersof packetmeasurements.

3. LossModeling

Here we describeour measuremenmethodand statistical
modelin detail. Considerthe tree-structuredietwork asso-
ciatedwith a singlesourceandmultiple recevers(e.g., Fig-
ure2.). A distinctpath(from the source)s associatedvith
eachrecever. Eachpathis comprisedof oneor morelinks
betweerrouterg(nodes).If isolatedsubpathgsubpathgon-
sistingof two or morelinks with no brancheskxist in the
network underconsiderationthentheseare removed and
replacedy a singlecompositdink to representheisolated
subpathNo isolatedsubpathxistin thenetwork shavnin
Figure2., butif, for example,additionalrouterswereadded
betweennodesl and2, thenwe would simply modelthis
chainof links asone compositdink resultingin the same
tree.

For individual paclket transmissionsye assumea sim-
ple Bernoulli lossmodelfor eachlink. The unconditional
succesprobabilityof link 4 (thelink into nodei) is defined
as

a; = Pr(pacletsuccessfullytransmittedrom p(4) to i),

where p(i) denotesthe index of the parentnode of node
i (the nodeabove i-th nodein the tree; e.g., referringto
Figure2., p(1) = 0). A pacletis successfullysentfrom
p(i) to ¢ with probability«; andis droppedwith probability
1- Q.

We modelthe lossprocessesn separatdinks asmutu-
ally independentAlthough spatialdependencécorrelated
successprobabilitieson neighbouringlinks) may be ob-
senedin networksdueto commontraffic, suchdependence
is highly circumstantiabndcannotbe readily incorporated
in a modelthatis intendedto be generallyapplicableto a
variety of networks. Bolot etal. proposedMarkovian mod-
elsof pacletlossin [10] basedon obsenationsof Internet
traffic. Although suchmodelsdo not fully accountfor the
extendedosshurstsobsenedin [7], we adopta similar ap-
proachfor modelingthe pacletlossprocessesn eachlink
(the modelis reminiscentof that usedto explore temporal
dependencin [1]).

If two, back-to-backpacletsare sentfrom nodep(i) to
nodei, thenwe definetheconditionalsuccesprobabilityas

B; = Pr(2ndpacletp(i) — i | 1stpacketp(i) — i),

wherep(i) — i is shorthanchotationdenotingthe success-
ful transmissiorof a paclet from p(¢) to ¢. Thatis, given
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that the first paclet of the pair is receved, then the sec-
ondpacletis receiredwith probability 5, anddroppedwith

probability 1 — 3,. We anticipatethat 5, > «; for each
1, sinceknowledgethatthefirst packetwassuccessfullye-

ceivedsuggestshatthequeuéor link 4 is notfull. Evidence
for suchbehavior hasbeenprovided by obsenationsof the

Internet[11, 7]. In fact,it is not unreasonabléo suppose
that3; = 1 in mary cases.

4. MeasuremenfEramevork

Each link in the tree has two (unknown) probabilities
associatedwith it, the unconditional and conditional
succesgprobabilities,a; andg;, respectiely. Theseprob-
abilities effect the single paclet and back-to-backpaclet
measurementthatwe will make, asdescribecbelon. The
measureddata can be collectedin a numberof possible
ways. For example, UDP can be usedfor active probing
or TCP connectionsnay be passvely monitored,in which
caseback-to-backeventsare selectedrom the TCP traffic
flows.

Single Packet M easurement: Supposdhatn; pacletsare
sentto receveri andthatof thesea numberm; areactually
receved(n; —m; aredropped).Thelikelihoodof m; given
n; is binomial (sinceBernoulli lossesareassumedpndis
givenby

i\ m; nij—m;
Um;|ni,pi) = (m)Pi (1-pi) )

wherep; = Hjep(o’i) a; andP(0,¢) denoteghe sequence

of nodesin the pathfrom the source0 to recever i. For

example, in Figure 2., P(0,10) = {1,3,5,10} and so
JEP(0,10) Qaj; = 01 a3050110-

Back-to-Back Packet Pair Measurement: Supposethat
the sourcesendsa large numberof back-to-backpaclet
pairsin which thefirst pacletis destinedor receveri and
the secondfor recever j. We assumehat the timing be-
tweenpairsof pacletsis considerablylarger thanthe tim-
ing betweentwo pacletsin eachpair. Let n; ; denotethe
numberof pairsfor whichthefirst pacletis successfullye-
ceivedatnodei, andlet m; ; denotethe numberof pairsfor
which boththefirst andsecondoacletsarerecevedattheir
destinationsFurthermorelet k; ; denotethe nodeat which
the pathsP(0,4) andP(0, j) diverge, sothat P(0, k; ;) is
their commonsubpath. For illustration, refer to Figure 2.
andlets = 6 andj = 8, thenkg s = 2. With this notation,



thelikelihoodof m; ; givenn; ; is binomialandis givenby

me s (mssoms ) = 3} pmid (1 . ymig—ma

(mij |nij,pij) = b;; (1-pi;) )
mi,j

where
pbij =

I s

q€P(0,k;,5)

I o

TE’P(k,‘)j,]’)

5. InferenceTasks

Assumethat we have madean assortmenbf single paclet
andback-to-baclpacket measurementsentto differentre-
ceiversor combinationsof recevers)asdescribedn Sec-
tion 4. Collectingall the measurementslefine

{mi} U {m; ;}
{ni} U {ni;},

wherethe index ¢ alonerunsover all receversandthe in-
dicesi, j run over all pairwisecombinationf receversin
the network.

Let us also denotethe collectionsof the unconditional
and conditionallink succesgprobabilitiesasa and 3, re-
spectvely. The joint likelihood of all measurementss
givenby

Hl(mi,j | N> Pii)-

.3

M =
N

SinceM and A areknown, we view (M |V, «a, B) asa
function of the unknown probabilitiesa and 8. We call
I(M|N,ea,B) thelikelihoodfunctionof a and3.

Basedon the likelihood function, we wish to make
inferencesaboutthe parametersx and3. Several options
exist.

Maximum Likelihood Estimation: Maximum likelihood
estimate®f a and3 aredefinedas
(@,8) = agmax I(M|N,a,B).
ap

Maximum likelihood estimation enjoys mary desirable
propertiesandis widely utilizedin statisticalinferencd12].

Maximum Integrated Likelihood Estimation: The con-
ditional succesgrobabilities@ may not be of interestin
mary applicationsln suchcases/3 arecallednuisancepa-
rametersandit is commonto integratethe likelihoodover
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thenuisanceparameteréirst, thenmaximizetheresultwith
respecto the parameter®f interest(in this casea). The
integratedmaximumlik elihood estimatef o aredefined
as

& = agmgx [UM|N,a.9)d,

whereeachconditionalsuccesgrobability 3, is integrated
from 0 to 1. Integratedlikelihood methods‘automatically
incorporatenuisanceparameteruncertainty” [12]. As a

consequencethe integratedlik elihood function may pro-

vide more accurateestimatef the unconditionalsuccess
probabilities than those provided by the joint likelihood

function.

Marginal Likelihood Analysis: In additionto determin-
ing the succesgrobabilitiesthat maximizethe likelihood
function,it maybeof interestto examinethemaminal lik e-
lihoodfunctionof eachindividual probability. Themaiginal
likelihoodfunctionof «; is definedas

UMIN,@) = [UMIN,a.8) das dB,

whereq; is thecollectionof all unconditionakuccesgrob-
abilities excepta;, andall probabilitiesareintegratedover
theinterval [0, 1]. Similarly, the mamginal likelihoodfunc-
tion of j; is

(MIN,B) = / (M |N, e, B) de dfs.

The maminal likelihood functionsare univariatefunctions
of the remainingparameter The maminals can be maxi-

mizedto obtainan estimateof the parameteror the func-

tions can be inspectedfor additionalinformation. If the

marginal hasa singlemode(peak),thenthewidth or spread
of the likelihood function canbe usedto determineconfi-

denceintervals for the maximum maginal likelihood es-
timate. More generally the maiginal may have multiple

modegafeaturecompletelylostwhenfocusingonly onthe

maximum),which may provide usefulalternatie explana-
tionsfor themeasurediata.

6. InferenceAlgorithms

Computingmaximumlik elihoodestimate®r maginallik e-

lihood functions can be a formidable task. Multidimen-

sional maximizationsor integrationsare time-consuming
anddirectly attemptingary of the inferencetasksoutlined

in Section5 leadsto extremelycomputationallyjdemanding
algorithmsthatarenot scalableo large networks.



Thebasicproblemis thattheindividuallik elihoodfunc-
tions I(m; | ni,p;) or I(my ;| nsj,pi ;) for eachtype of
measuremernitvolve productsof the 8 and/ora probabil-
ities. Consequentlyit is difficult to separateahe effects of
eachindividual succesprobability.

We overcomethis difficulty usinga commondevice in
computationaktatisticsknown asunobservedlataor vari-
ables. To introducethe notion of unobsered data,let us
considerthelikelihood

I(mi|ni,p;) = <n,> P (1 =p)™ ™,
m;

wherep; = [];cp(,s) ;- Assumingthat the path con-
sists of more than one link, the effects of the individual
link successprobabilities on this measuremenare com-
bined throughthe productover the entire path. However,
supposdt were possibleto measurehe numbersof pack-
etsmakingit to eachnode.Let usdenotetheseunobsered
measurementsy u; ;, j € P(0,4), j # i. With thesemea-
surementsn hand,we canwrite thelikelihoodfunction of
theobsenedandunobsereddataas

I ({uji} |nispi) =

[T ("0)e o

Up(5),i —Uj,i
_aj) p()s i
, . Uj4
JEP(0,4)

wherep(j) againdenoteghe parentof nodej. Also, since
we are ableto measureat the sourceandrecever, in the
expressionabove we setug; = n; andu;; = m;. The
examplein Figure 6. illustratesthe notion of unobsered
data.

U111 =11y

Figure 2 — Path from source to receiver ¢ = 11 with
unobser ved data at each internal router.

Becausehelikelihood! ({u;,:} | ni, p;) dependsnboth
the obsened dataandthe unobsered, it is calledthe com-
pletedatalik elihood. The key featureof the completedata
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likelihoodfunctionis thatit factorizesinto a productof in-
dividual binomial likelihoodfunctions,eachinvolving just
asinglesuccesprobability. Thus,the completedatalik eli-
hoodfunctionis a trivial multivariatefunction, andthe ef-
fectsof theindividuallink probabilitiesareeasilyseparated.

In a similar fashion,we introduceunobsered datafor
all measuregbaths andthesevariablesallow usto factorize
the joint likelihood function into a productof univariate
functions. Severalwell-known optimizationstrategjiestake
advantageof this simplification.

The Expectation-M aximization Algorithm: As thename
suggeststhe Expectation-MaximizationEM) Algorithm

alternatesbetween two steps; one step estimatesthe

unobsered data and the other maximizesthe complete
datalikelihood[13]. The EM Algorithm can be usedfor

our problem to compute maximum likelihood estimates
of o and 3. Beginningwith aninitial guessfor o and g3,

the algorithmis iterative and alternateshetweentwo steps
until convergence.The Expectation(E) Stepcomputeghe

conditional expectedvalue of the unobsered data given

the obsened data, under the probability law induced by

the current estimatesof @ and 8. The E Step can be

computedin O(N) operationswhere N is the total num-

ber of recevers, using an upward-davnward probability

propagatior(or messag@assingllgorithm[9]. The Max-

imization (M) Step combinesthe obsened and expected
unobsered data to form the complete data likelihood

functionwhich is thenmaximizedwith respecto o and .

Sincethe completedatalik elihoodfactorizesnto a product
of univariate functions, eachinvolving just one success
probability, the maximizers have closed-form, analytic
expressions. Thus, the M Step can also be computedin

O(N) operations. Eachiteration of the EM Algorithm is

thereforeO(N) in compleity. Moreover, it canbe shavn

thatthe original (obseneddataonly) likelihoodfunctionis

monotonicallyincreasedat eachiterationof the algorithm,
and the algorithm corvergesto a local maximum of the

likelihoodfunction[13]. Our experimentshave shavn that

the algorithm typically corvergesin a small number of

iterations.

Factor Graphs and Marginal Analysis. It may be of in-
terestto computemaximumintegratedlik elihoodestimates
ortoinspectmarginal likelihoodfunctions,asmentionedn
Section5. The EM Algorithm only deliversmaximumlik e-
lihood estimatesHowever, usingthe notion of unobsered
datain conjunctionwith probability propagatiorsimilar to
that employed in the E Step above, computationallyef-
ficient algorithmsdo exist for computingmaximuminte-



gratedlikelihood estimatesand maginal likelihood func-
tions.

Thesealgorithmsarebasedon graphicalrepresentations

of statisticaimodels.SuchrepresentationscludeBayesian
networks and, more generally factorgraphs[9]. Boththe

parameter®f interestand collecteddataappearas nodes
in the factorgraph. Eachnodeassociatedvith a parame-
ter is characterisedby a (potentially unknovn) probability
distribution. Links betweenthe nodesindicate probabilis-
tic dependenciesBy introducingunobsered variablesas
additionalnodes,it is possibleto decouplethe effects of

differentsuccesgrobabilitiesin the graphicalmodel.

Probabilitypropagatiorcanbe usedto performexactin-
ference providedthe graphstructureis agyclic. However,
this may requirehigh-dimensionasummations|eadingto
a heary computationaburden;thus, exact inferencealgo-
rithms can scalepoorly asthe network sizeincreases.To
avoid the associatedomputationaburden,we have devel-
opedan approximationto exactinference.In the approxi-
matestratagyy, we first infer lik elihoodfunctionsof theloss
parameterat the recevvers. We thenusethesefunctionsto
performinferenceat the next level of thetree,andcontinue
upwardsto the source. Details of the algorithmappearn

[8].

7. Consisteng andBias

If theconditionalsuccesgrobabilitiesd areall exactly one,
thenit canbe shovn thatmaximumlik elihoodestimateof

the unconditionallossesa: will tendto their true valuesas
the numberof paclet measurementisicreasesThis canbe
understoody consideringa singlepathfrom the sourceto

recever j. Thesinglepacletmeasurements; andn; pro-
vide an asymptoticallyconsistentestimatorof the product
pj = Hiep(o’j) «;. Specifically p; = 7:_]] corvergesto p;

asn; tendsto infinity. Similarly, theestimator®; ; = ’:—Jf

corvergeto

Dij; = H /Bq H Qr,

qE’P(O,k,-,]-) TE’P(ki,j,j)

aseachn; ; — oo (recallthatthenodek; ; definesthe sub-
pathcommonto bothrecevers).

To simplify the notation, let us assumethat there are
L links in the path and denote them by P(0,j5) =
{j1,J2,---,jr}, wherej, = j. Defineiy,...,ir so
that the commonsubpathbetweenP(0,4,) andP(0, j) is
P(0,7¢), £ = 1,...,L (notethatiy, = j, = j). Thenwe
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have

~

Pi = Q0 Qyg Oy,
Pijg — /Bj1aj2aj3 QG
piQaj — leﬁjga](i o 'a]’L’

Pipjr = /le’szﬂjs'”ﬂjL‘

Note thatif p;, ;, — 1, thenwe may deducethat 3;, =
1, £ = 1,...,j. In this case,p;, ,;, — «; and
ﬁiL—eij — Qjp o0y "0 Qg for ¢ = 2,...,L. Con-
sistentestimatorof a canbe computedaccordingto

ajL = ﬁjLajL?

~ _ ﬁ’iL—ﬁajL
ajL—l = P —— E = 1, .

B ., L—1. Q)

If oneor moreof the 3 arelessthanone,thena system-
atic biasis introducedinto the estimationprocessand the
maximumlik elihood estimatorsare not consistent. How-
ever, the severity of the biasis directly linkedto the extent
to whichthe 3 deviate from one;thelessthe deviation, the
lessthe bias. Supposethatp; ; — v < 1. Thenwe can
deducehat

4
v < I8 <1
k=1

for £ = 1..., L. This shows thatthe asymptoticvalue of
Di_,.j. lieswithin theinterval

L L
lv II e I ak]=
k=L —f+1 k=L—t+1

for¢ = 1,...,L — 1. From hereit follows that the the
asymptoticvaluesof the estimators{ai, } definedin (1) lie
within theintervals

1
YOk, — Q| -
Y

Thus, we seethatthe valueof v = H’,;Zl B, controlsthe
asymptoticaccurag of themaximumlik elihoodestimators.

8. SimulationExperiments
8.1. A SimpleExample

Letusnow consideithesimpletwo-recevernetwork shavn
in Figure8.1.. Assumethatwe have mademeasurementsf



PSfragreplacementa , 85

singlepacketandback-to-backpaclet:

M:
N:

{mi}i=a,3 U{m;}tij=2,3
{ni}ize,3 U{ni;}ij=23-

Figure 3 — A small network with two receiver s. Associ-
ated with each link are an unconditional success proba-
bility , ;, and conditional success probability , 3,.

Maximum likelihood estimatesf a;, as, a3 aregiven
by

(a17a27a3) =

arg max max
a1,a2,a3 | B1,89,83

l(M |N, al,a2,a3aﬂlaﬂ2aﬂ3) .

Note that direct optimizationrequiresthe joint maximiza-
tion of the six dimensionalik elihoodfunction; a daunting
taskevenin this simplecase.Usingthe EM Algorithm we
caneasilydetermine(a, , as, @3) in O(K) time, where K
is the numberof iterationsof the algorithm. The mamginal
likelihoodfunctionof eacha; canalsobecomputedisinga
factorgraphrepresentatioof the network anda probability
propagatioralgorithmin O(K) time.

To exploretheperformancef thesealgorithmsconsider
threescenarios.

Scenario 1:
(a1,a2,a3) = (0.80,0.90,0.70)
(B1,B5,83) = (0.99,0.99,0.99)
N = {nl = 10000}i=2,3 U {ni,j = 10000}1"]‘:2’3
Scenario 2;
(a1,a2,a3) = (0.80,0.90,0.70)
(B1:B2,B3) = (0.95,0.95,0.95)
N = {n‘l = 1000}i=2,3 U {nz,] = 1000}1"]':2’3
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Table 1. Loss estimation performance

Absolute Error

2
[¢]
3 MLE MMLE Bound
3| mean/ max mean / max v
1| 0.0106/ 0.0137| 0.0053/ 0.0122| 0.0199
2 | 0.0391/ 0.0452| 0.0191 / 0.0256| 0.0690
3| 0.0533/ 0.1141| 0.0854 / 0.1148| 0.3625
Scenario 3:

(a1,00,a3) = (0.80,0.90,0.70)

(ﬂl;ﬁ2753) = (08570957075)

N = {ni = 100}1':2’3 @] {n@j = 100},’7]':273

The three scenariosvere eachsimulatedin 7' = 100
independentrials. In eachtrial, the maximumlikelihood
estimategMLEs) and maminal likelihood functionswere
computedfor eachunconditionalsuccesgprobability The
maximumsof the mamginal lik elihoodfunctions(maximum
mauginal likelihood estimates MMLES) provide as setof
alternatves to the MLEs. The mean(over all trials and
links) absoluteerror, maximum(overall trialsandlinks) ab-
soluteerror, aswell asthetheoreticaboundy (asdescribed
in Section?) for eachscenarioaresummarizedn Table1.
In Scenarial, we have a very large numberof paclet mea-
surement$10000 of eachtype)andthe3 arealmostl. Both
the MLE andmaginal likelihood function producenearly
perfectinferences.In Scenario® and 3, we seelargerer-
rors, but theseerrorsare within the predictedbounds. It
is alsointerestingto notethatthe maximummaiginal like-
lihood estimatorperformsslightly betterthanthe standard
maximumlik elihoodestimator Thisimprovementhasalso
beenobsenedin mary otherapplicationg12]; maminaliza-
tion over nuisancgparametersendsto provide morerobust
estimators. Figure 8.1. displaystypical resultsfrom each
scenario.

8.2. A LargerNetwork Simulation

We experimentedisingsimulationshasednthenetwork in
Figure6.. We generategorobemeasurementsy allowing
eachlink in the network to assumeone of two statevalues,
0 representingongestionand 1 representinga light traf-
fic burden. At time instantst € T, the stateof eachlink
wasupdatedaccordingto a Markov processThetransition
probability matrix of the procesgyoverningthe stateof link
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Figure 4 — Typical results from each measurement sce-
nario. From left to right plots show results for ai, as,
and a3. The true value is indicate with a solid vertical
line, the MLE is indicated with a dashed vertical line.
Also shown are the marginal likelihood functions for
each of the a.

(p(i),1) wasdeterminedy drawing «;; from auniformdis-
tribution U [0, 1], andthendrawing 3; from Ula;, 1]; the
matrix was designedso thatif traffic were sentacrossthe
link it would experiencea steady-statsuccesgprobability
of a; anda conditionalsuccesgrobability of 3,. Packet-
pair probesweresentto the variousreceversin anordered
fashiondesignedo extractaninformative subsebf thepos-
siblem; ; andn; ;. Thetimesatwhich thefirst pacletsof

thesepairswere sentwere determinedrom a Poissornpro-
cesssuchthatinter-arrival timeswerewell-separatedThe
secondpacletin apairwassentonetime instantlater. 1600
paclet pairs were sentthroughthe network, with the des-
tinationsdesignedso that therewas a uniform distribution

acrossthe network of divergencenodes(the nodeat which

the pathsof theindividual pacletsin the paclet-pairssep-
arated).Sucha distribution guaranteesn equal(prior) ex-

plorationof all network parameters.

Figure 8.2. depictsthe resultof oneof the experiments.

The posteriordistribution of succesprobabilitywascalcu-
latedfor eachlink, andplottedin theboxes;thearrovsmark
thetruevalues.The confidenceghatcanbe placedonanes-
timateis clearly dependenbn the amountof datathat can
be collected;estimationof the succesgprobabilitiesof a4,
ag, anday is basedn paclket-pairsinvolving a paclettrav-
eling from the sourceto eithernode6 or 7, both of which
are extremelylossy paths. The maximummaminal lik eli-
hoodestimatordor the unconditionalsuccesprobabilities
resultedin a meanabsoluteerror of 0.084,over 200inde-
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pendentrials.

Figure 5 — An example of the results of the experiment
described in Section 8.2. 1600 packet pairs were sent to
various receiver s in order to generate posterior prob-
ability distrib utions of the success rates of the links.
These are plotted in the boxes on the links; the arrows
mark the true values.

9. Conclusions

This work demonstrateshe potential of unicast, end-to-
end network measuremento determineinternal network
losses. We proposeda back-to-backpaclet pair measure-
ment schemethat takes advantageof the correlationsin
lossesxperiencedy closelytime-spaceghaclets.We also
developedtwo novel algorithmsfor likelihoodanalysisand
estimationof internallink lossprobabilities.This paperhas
laid the theoreticalfoundationfor future investigationsof
unicastnetwork tomography One promisingpracticalas-
pectof ourframawvork is thatit maybeusedin concertwith
variousmeasuremertools, including actve UDP probing
or passve TCP monitoring. We are currently studyingour
framawork with moresophisticategimulationtoolsaswell
aswith actualnetwork measurements.
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