
Distributed Particle Filters for Sensor Networks

Mark Coates

Department of Electrical and Computer Engineering,
McGill University

3480 University St, Montreal, Quebec, Canada H3A 2A7
coates@ece.mcgill.ca,

WWW home page: http://www.ece.mcgill.ca/∼coates

Abstract. This paper describes two methodologies for performing dis-
tributed particle filtering in a sensor network. It considers the scenario
in which a set of sensor nodes make multiple, noisy measurements of
an underlying, time-varying state that describes the monitored system.
The goal of the proposed algorithms is to perform on-line, distributed
estimation of the current state at multiple sensor nodes, whilst attempt-
ing to minimize communication overhead. The first algorithm relies on
likelihood factorization and the training of parametric models to approxi-
mate the likelihood factors. The second algorithm adds a predictive scalar
quantizer training step into the more standard particle filtering frame-
work, allowing adaptive encoding of the measurements. As its primary
example, the paper describes the application of the quantization-based
algorithm to tracking a manoeuvring object. The paper concludes with a
discussion of the limitations of the presented technique and an indication
of future avenues for enhancement.

1 Introduction

The goal of many sensor networks is to detect and track changes in the monitored
environment. Such scenarios arise in target tracking [1,9], in time-varying density
estimation, and in the task of robot navigation [3, 4]. In these situations, the
class of signal (or information) processing task that must be collaboratively
performed by the sensor nodes migrates from static estimation or detection to
on-line estimation, filtering or change-point detection. It becomes important to
design sequential algorithms that can dynamically fuse the information recorded
by the sensors without requiring excessive exchange of either data or algorithmic
information.

In this paper, we consider the situation where the nature of the monitored
environment can be captured by a Markovian state-space model that involves
potentially nonlinear dynamics, nonlinear observations, and non-Gaussian inno-
vation and observation noises. Our goal is to perform sequential estimation of
the current system state at multiple sensor nodes in the network. In nonlinear
and non-Gaussian scenarios, the decentralized Kalman filter [2], which admits an
attractive, relatively low-dimensional parametric information exchange between

2

sensor nodes, becomes inapplicable. Extended Kalman filters, grid-based meth-
ods and Gaussian-sum filters are possible alternatives [5, 6], but these all have
limitations, and information exchange is not as simple. The class of sequential
Monte Carlo (or particle filtering) methods [7] is attractive because of its power
and flexibility. These methods keep track of a set of “particles”, or candidate
state descriptions. The methods evaluate how well each particle conforms to the
dynamic model and explains the observations, using this assessment to gener-
ate a weighted particulate approximation to the filtering distribution, and hence
form state estimates.

There are two causes for concern in the adoption of sequential Monte Carlo
algorithms in sensor networks. First, the algorithms are substantially more com-
putationally demanding than more parametric alternatives. Second, the devel-
opment of decentralized or distributed particle filters has been limited, so it is
somewhat unclear what information must be exchanged in order to implement
a collaborative algorithm. The second concern is more pressing than the first; a
sensor node with reasonable processing power and memory is likely to be able to
cope with the computational demands of a particle filter unless state changes are
very rapid, in which case sensing and network communication also begin to be
very difficult exercises. Identifying the information that needs to be exchanged
between nodes is more difficult.

It is certainly undesirable to transmit the raw (or finely quantized) data to a
set of processing network nodes. The communication cost is high and substantial
sensor node energy is consumed. On the other hand, the natural information
representation within a particle filter is a set of particles and associated weights.
The exchange of these in raw form almost certainly involves the transmission of
many more bits than the exchange of the raw data. In some cases, it is possible to
develop a parametric approximation of the particle-based filtering distribution (a
method adopted in [8,9]). We explore this idea further in this paper, examining
some of the restrictions in model structure that this approach implies.

In this paper, we propose two distributed particle filtering algorithms for
sensor networks. The first approach is based on factorizing the likelihood, and
forming parametric approximations to products of likelihood factors (using the
particles and their associated likelihoods as training data). The model param-
eters are then exchanged between sensor nodes, instead of the data or exact
particle information. This approach places restrictions on the structure of the
problem, because it must be possible to both factorize the likelihood and de-
velop reasonably accurate, low-dimensional parametric models to describe the
factors. The approach results in substantial communication savings when the
data dimension is much higher than the dimension of the parameter space of the
models approximating the likelihood-factors.

The second distributed algorithm uses an adaptive data-encoding approach.
It involves the training of predictive linear quantizers at every time-step based
on a common particle filter maintained at all nodes. Sensor nodes transmit the
quantized data to one another; the compression can be substantial because the
particle filter can provide a very good indication of where a sensor measurement

3

is likely to be. This approach places no restrictions on the nature of the likeli-
hood function, but the training of optimal linear quantizers is computationally
expensive, so the amount of data that can be processed at each time-step is
limited by the computational power of the sensor nodes. With this limitation in
mind, we describe a hierarchical sensor network framework involving two classes
of nodes, A and B. Class A nodes are more computationally powerful, and have
more energy resources. In the framework we describe, all computation is per-
formed by class A nodes, and all sensing by class B nodes. The class A nodes
manage the class B nodes, selecting only a small set to make measurements at
any time step. The adaptive data-encoding approach is then feasible.

The paper is organized as follows. Section 2 states the problem and reviews
the core steps of centralized particle filtering algorithms. Section 3 describes
the two distributed particle filtering algorithms. Section 3 describes the two
distributed particle filtering algorithms. Section 4 outlines a hierarchical sensor
network framework that uses the adaptive-encoding based filtering algorithm.
Section 5 reports on simulations in which the hierarchical sensor network was
used to track an object manouevring through a sensor field. Finally, Section 6
discusses the proposed algorithms, indicating limitations and proposing avenues
for improvement and further research.

1.1 Related Work

There have been some efforts to design distributed Bayes (or particle) filters in
the sensor networks [8, 9] and in the artificial intelligence community [4]. The
work in [8] is targeted at tracking an object or several objects. In the single
object scenario, one leader node is active at any time instant. The leader node
maintains a belief state, effectively a filtering distribution (represented either
parametrically or through a particle set). Based on its belief state, the leader
node evaluates the expected utility of neighbouring sensors and chooses the node
with highest utility to become the new leader node for the next time step. It then
propagates its belief state to the new leader node, either by exchanging param-
eters or by transmitting particle locations and weights. In follow-up work, the
authors have investigated techniques for approximating the particle distribution
and transmitting this approximation.

The work in [4] designs distributed particle filters for decentralized data fu-
sion. The aim is to use local particle filters to determine which measurements are
worth sharing. The scheme works using a query-response system. Each sensor
node maintains a local particle filter. Neighbouring nodes query one another for
useful sensor measurements; a query is comprised of a small set of randomly-
selected particles with entire state trajectories. Based on this set of particles,
the queried node examines its set of unshared measurements (its own or those
received from other sensors), and transmits only the most informative measure,
as evaluated by some form of divergence measure.

The distributed particle filters we describe in this paper differ in purpose
and implementation. The key difference is that we strive to maintain a common

4

particle representation of the posterior distribution at multiple nodes in the net-
work at every time instant. This means that the manner in which the measured
data at any time instant is utilised must be consistent across the network.

2 Generalized Problem Statement and Centralized
Approaches

In this paper, we are concerned with the problem of performing on-line state
estimation for multi-dimensional signals that can be modelled using Markovian
state-space models that are (potentially) nonlinear and non-Gaussian. The un-
observed global state {xt; t ∈ N} is modelled as a Markov process with ini-
tial distribution p(x0) and transition probability p(xt|xt−1). The observations
{yt; t ∈ N

∗} are assumed to be conditionally independent (in time) given the pro-
cess xt and of marginal distribution p(yt|xt). We denote by x0:t � {x0, . . . ,xt}
and by y1:t � {y1, . . . ,yt}, respectively, the system state and the observations
up to time t. The measurements yt are recorded by K sensors, and we use yk

t

to denote the subset of observations made by the k-th sensor.
The aim is to estimate on-line the posterior distribution p(x0:t|y1:t), and func-

tions derived from it, such as the filtering distribution p(xt|y1:t or expectations
of the form I(ft) = Ep(x0:t|y1:t)[ft(x0:t)].

2.1 Centralized Particle Filtering Approach

In the case where the sensor measurements are available at a central location,
several approaches have been proposed to perform the task outlined in the previ-
ous section. In the linear, Gaussian state-space case, the Kalman filter provides
analytical update expressions for tracking the evolution of the posterior distri-
butions. In the case of nonlinear and/or non-Gaussian models, approximation
approaches such as the extended Kalman filter [5] or grid-based methods [6] can
be adopted. An alternative approach is to employ one of the algorithms belong-
ing to the class of sequential Monte Carlo (or particle filtering) methods [7].
This section now briefly outlines sequential Monte Carlo methods, drawing on
descriptions from [7] and references therein.

Sequential Monte Carlo methods have been dubbed particle filters because
they maintain a set of state trajectories (or particles) that are candidate rep-
resentations of the system state. There is an importance weight associated with
each particle; at a given time instant, this weight is representative of how well
the state trajectory conforms to model dynamics and describes the set of obser-
vations, relative to the other particles. Whenever there is a transition between
time instants and a new observation becomes available, each trajectory is ex-
tended, and its associated weight adjusted according to how well it explains the
new observation.

There are three generic steps that appear, in one form or another, in the ma-
jority of sequential Monte Carlo methods. Individual algorithms have variations

5

on the outlined steps or have additional steps to improve estimation perfor-
mance, but the steps form the foundation for the methodology. The first step is
the initialisation of N particles, denoted by {x(i)

0:t; i = 1, . . . , N}. In this initiali-
sation phase, each particle is sampled from the initial distribution: x(i)

0 ∼ p(x0),
and every importance weight is initialised to w

(i)
0 = 1/N . After initialisation, the

remaining two steps, the importance sampling step and the selection step, are
repeated at every time instant. First, in the importance sampling step, for each
i = 1, . . . , N , x̃(i)

t is sampled from an importance distribution π(xt|x(i)
0:t−1,y1:t),

which may be any distribution that has the same support as the posterior. A
trajectory proposal is then formed by appending this sample to the existing i-
th particle to form x̃(i)

0:t =
(
x(i)

0:t−1, x̃
(i)
t

)
. The importance weights are evaluated

according to w̃
(i)
t =

p(yt|x̃(i)
t)p(x̃

(i)
t |x(i)

t−1)

π(x̃
(i)
t |x(i)

0:t−1,y1:t)
. The set of importance weights is nor-

malized to sum to one. In the selection step, N particles {x(i)
0:t; i = 1, . . . , N} are

formed by sampling with replacement from the set {x̃(i)
0:t; i = 1, . . . , N} where

the probability of sampling the i-th trajectory is w̃
(i)
t .

Estimates of the posterior distribution, the filtering distribution, or of ex-
pectations are formed based on the N particles {x̃(i)

0:t; i = 1, . . . , N} and the
associated, normalized weights w̃

(i)
t . The posterior distribution is estimated by

the weighted empirical distribution P̂N (dx0:t|y1:t) = 1
N

∑N
i=1 w̃

(i)
t δ

x
(i)
0:t
(dx0:t).

Expectations I(ft) are estimated as ÎN (ft) =
∑N

i=1 ft(x
(i)
0:t).

In the centralized particle filtering case, with K sensors, the communication
required per time instant (neglecting overhead bits) is

∑K
k=1 DkMk bits. For

each sensor k, Mk is the number of communication hops to the fusion centre,
and Dk is the number of bits necessary for an adequate representation of its
measured data.Dk is dependent on the required accuracy of the tracking function
and the encoding mechanism. In the next section, we focus on developing a
method that can dramatically reduce the value of Dk (as compared to a naive
implementation).

3 Distributed Particle Filters

This section develops two distributed algorithms designed to track the state of
a non-linear dynamic system based on noisy measurements made by a set of
physically isolated sensors. The algorithms consists of K particle filters, with
one filter running at every sensor in the network. It is the nature of the commu-
nication between sensors that differs between the two algorithms. At this point,
it is useful to define synchronized particle filters; in this paper, these are particle
filters whose random number generators have been initialized at the same point
and which generate the same number of random numbers per time step. This
means that their random draws are always the same).

6

3.1 Dissemination of Raw Data

In order to update its particle approximations to the posterior distributions when
new data becomes available at time t, each filter needs to calculate, for each par-
ticle i = 1, . . . N , the likelihood function p(yt|x(i)

t), which determines the new
weight of the particle. If the importance sampling distribution is data-dependent,
the data is also required for the sampling procedure. The dissemination of quan-
tized data through the network generates a similar communication overhead as
the centralized approach, approximately

∑K
k=1 DkMk bits, where Dk is, as be-

fore, the number of bits required for adequate data representation, but Mk is
now the number of communication hops required to disseminate the data of sen-
sor k throughout the network. In the worst case, Mk should be linear in K, and
the communication cost is O(KD) where D =

∑K
k=1 Dk.

3.2 Factorizable Likelihoods: A Parametric Modelling Approach

It is possible to adopt an alternative approach to data dissemination in the spe-
cial case where the likelihood function is factorizable, p(yt|xt) =

∏K
k=1 p(y

k
t |xt),

and each factor p(yk
t |xt) can be described (or approximated) by a parametric

model Fk(xt;θk
t). The model parameters θk

t are estimated from training data
pairs {

(
x(i)

t , p(yk
t |x(i)

t)
)
; i = 1, . . . , N}, and the parameters disseminated instead

of the data itself. Unfortunately, unless the data represented by each sensor at
each time instant has high dimension, it is likely that an adequate parametric
representation of the likelihood function will require more bits than the data
itself. The potential advantage of the scheme is that there is the possibility of
performing model “aggregation” at each sensor node, thereby avoiding the com-
munication expense engendered by the need to disseminate the entire parameter
set {θk

t ; k = 1, . . . ,K} throughout the sensor network.
We now describe an algorithm that performs a form of model aggregation

across sensor nodes. Figure 1 presents the algorithm in high-level pseudo-code
format. In this algorithm, we need to make a further assumption on the nature
of the likelihood. Not only do we need to be able to approximate individual
likelihood factors by a parametric model, we need models Gk(xt;φk

t) that can
approximate products of such likelihood factors,

∏
j∈S(k) p(y

j
t |xt). Here S(k) is

the set of likelihood factors whose product is modelled at node k. Below, we
consider the scenario where there is a single communication chain from node 1
to node K, with any node k in the interior of the chain communicating only with
nodes k−1 and k+1. The algorithm is very similar if there is a tree structure for
communication; parameters are simply exchanged between parents and children
instead of neighbours in the chain.

The particle filter at each node is initialized as in the standard sequential
Monte Carlo framework, by sampling N particles from p(x0). At time instant t,
Node 1 samples from its importance distribution π1(xt|x(i)

0:t−1,y
1
1:t) to generateN

particles {x̃(i)
t ; i = 1, . . . , N}. The importance distribution may depend on y1

1:t,
but it cannot depend on measurements at other sensors, which are unavailable

7

to node 1. Node 1 calculates the value of its likelihood factor for each one of
these particles for the current observation, p(yk

t |x̃(i)
t), and then trains the model

G1(xt;φ1
t) using data pairs from the training set {(x̃(i)

t , p(y1
t |x̃(i)

t)); i = 1, . . . , N}.
The values φ1

t are then appropriately quantized and transmitted to node 2 in
the chain.

Node 2 also extends the trajectories by sampling from its importance distri-
bution π2(xt|x(i)

0:t−1,y
2
1:t,φ

1
t), generating values x̃(i)

t . Note that the importance
distribution can depend on the transmitted parameters φ1

t , and the samples
may differ from those generated at node 1. Node 2 trains a model G2(xt;φ2

t) to
fit the product of likelihood factors p(y1

t |xt)p(y2
t |xt). The training is performed

according to data pairs from the training set {
(
x̃(i)

t ,G1(x̃
(i)
t ;θ1

t)p(y
2
t |x̃(i)

t)
)
; i =

1, . . . , N}. The process continues, with node k training a model Gk(xt;φk
t) to fit∏k

j=1 p(y
j
t |xt) using the training data {

(
x̃(i)

t ,Gk−1(x̃
(i)
t ;φk−1

t)p(yk
t |x̃(i)

t)
)
; i =

1, . . . , N}. At the K-th sensor node, the parameters of a model GK(xt;φK
t)

have been trained. This model attempts to fit the global likelihood p(yt|xt) =∏K
k=1 p(y

k
t |xt).

In the next phase of the algorithm, the estimated parameters φK
t are prop-

agated back along the communication chain. Node k uses its knowledge of the
model GK to calculate estimates of likelihood for its samples x̃(i)

t . These esti-
mates are then used to determine importance weights and to perform the re-
sampling step. The algorithm, as described thus far, results in a different set
of particles and different estimates at each sensor node. If synchronized par-
ticle filters are used, then this effect can be eliminated. Instead of performing
resampling based on its initial trajectory extensions, each sensor node gener-
ates a new set of trajectory extensions x̃(i)

t according to a common importance
distribution π(xt|x(i)

0:t−1,φ
K
t). Due to filter synchronization, these particle ex-

tensions are common to all nodes, as are the calculated importance weights and
the resampling step. The set of particles remains common across all nodes, as do
the estimates. This procedure allows importance sampling to take place from a
distribution that is dependent on all the data in the network. The originally sam-
pled particle extensions could have been generated in areas where the posterior
is insubstantial, due to consideration of only the local data.

The communication cost of this algorithm per time step, neglecting overhead
bits, is KPK +

∑K
k=1 Pk, where Pk is the number of bits required to represent

the parameter set φk. Bounding Pk by P , the worst-case for any node k, the
cost becomes O(KP). Comparing this to the cost of disseminating the raw data,
which was O(KD), with D being the number of bits required to represent all
the measured data, we see that there is substantial saving if P
 D. This will
be the case when there are many sensors, so that the data dimension is high,
and when the likelihood factors can be represented by simple models. Each Gk is
a function on the state-space, whose dimension should be substantially smaller
than that of the data. Care must be taken in model selection to ensure that the
dimension of the parameter space is reasonable and that the parameters can be

8

Distributed Parametric Approximation Particle Filter

1. Initialisation, t = 0.
– For each sensor k = 1, . . . , K
• For i = 1, . . . , N , sample x

(i)
0 ∼ p(x0) and set t = 1.

2. First Importance sampling step and forward parameter exchange

– Define φ0
t = ∅, the empty set, and G0(xt; φ

0
t) = 1 ∀xt.

– For k = 1, . . . , K
• For i = 1, . . . , N , sample x̃

(i)
t ∼ πk(xt|x(i)

0:t−1,y
k
1:t, φ

k−1
t).

• Estimate the parameters φk
t of the model Gk(xt; φ

k
t), designed to

approximate
∏k

j=1 p(yj
t |xt), using data pairs from the training set

{
(
x̃

(i)
t ,Gk−1(x̃

(i)
t ; φk−1

t)p(yk
t |x̃(i)

t)
)

; i = 1, . . . , N}.
• If k < K, quantize φk

t and send to node k + 1.

3. Backward parameter exchange and weight calculation
– For k = K, K − 1, . . . , 1
• For i = 1, . . . , N , sample x̃

(i)
t ∼ π(xt|x(i)

0:t−1, φ
K
t) and set x̃

(i)
0:t =(

x
(i)
0:t−1, x̃

(i)
t

)
.

• For i = 1, . . . , N , evaluate the (approximate) importance weights

w̃
(i)
t =

GK(x̃
(i)
t ; φK

t) p(x̃
(i)
t |x(i)

t−1)

π(x̃
(i)
t |x(i)

0:t−1, φ
K
t)

.

• Normalize the importance weights.
• If k > 1, transmit the quantized parameters φK

t to node k − 1.

4. Selection step
– For k = 1, . . . , K, resample with replacement N particles {x(i)

0:t; i =

1, . . . , N} from the set {x̃(i)
0:t; i = 1, . . . , N} according to the importance

weights.
– Set t← t + 1 and go to step 2.

Fig. 1. High-level algorithm description of the distributed particle filter that uses para-
metric models to approximate likelihood factors (see Section 3.2).

9

estimated using an algorithm that is not extremely computationally demanding.
The sensor nodes must run a training algorithm every time-step, so the training
must be a reasonable exercise given processing power and memory constraints. It
should also be noted that each sensor must be aware of the functional structure
of the models of its neighbours and also that of the global model GK .

3.3 Distributed Particle Filter using Adaptive Encoding

In this section, we describe a distributed particle filtering algorithm that uses
the predictive capabilities of the particle filter located at each sensor node to
perform efficient, adaptive encoding of the measured data. In contrast to the
parametric algorithm, which is effective when the data dimension is high, sen-
sor computational limitations combine with the structure of the encoding-based
particle filter to impose a restriction on the feasible data dimension.

In the description of the algorithm that follows, we again consider the scenario
where there is a single communication chain from node 1 to node K, with any
node k in the interior of the chain communicating only with nodes k − 1 and
k+1. As in the parametric-approximation filter, the adaptive-encoding particle
filter is equally applicable if there is a tree structure for communication.

Sensor k records a vector of measurements yk
t at each time step. Denote the

dimension of this vector dk. The vector of data collected at all sensors, yt, has
dimension d �

∑K
k=1 dk. The particle filters at all nodes are synchronized with

one another, and each particle filter is initialized as in the standard sequential
Monte Carlo framework, by sampling {x(i)

0 ; i = 1, . . . , N} from p(x0). Each node
also maintains a set of d time-varying, scalar quantizers qt, consisting of a code-
book and a partition function. We will index the set using a pair of integers
(k, j), so that at time t, qk,j

t represents the quantizer corresponding to the j− th
element of the measurement vector yk

t .
At time t, sensor node k samples from the prior distribution p(xt|x(i)

0:t−1)
to generate N particles {x̃(i)

t ; i = 1, . . . , N}. (As an alternative to these steps,
one can follow the idea of auxiliary variable-based particles filters [10], and have
the sensor generate a set of values {µ(i)

t ; i = 1, . . . , N}, where µ
(i)
t is the mean,

mode, or some other likely value associated with p(xt|x(i)
0:t−1)). Based on the set of

particles x̃(i)
t (or the µ

(i)
t) , the sensor node then generates a set of predictive data

values {ỹ(i)
t ; i = 1, . . . , N} by drawing from the likelihood functions p(yt|x̃(i)

t (or
p(yt|µ̃(i)

t). Note that this step requires that each sensor have knowledge of the
global likelihood function. The particle filters are synchronized, so every node
generates the same set of predictive data values.

The next step of the algorithm is the quantizer training phase. In designing
and training the quantizers qt, a natuaral choice is to attempt to minimize the er-
ror function

∫
p(yt|x0:t−1)

[∫
(p(yt|xt)− p(qt(yt)|xt))

2
dxt

]
dyt, where qt(yt)

is the quantized value of yt. The particle approximation to this error function

is
∑N

i=1

∑N
j=1

(
p(ỹ(i)

t |x̃(j)
t)− p(qt(ỹ

(i)
t)|x̃(j)

t)
)2

. Vector quantization can be ex-
plored as a possible path for minimizing this function, but in any event, sensor

10

Distributed Adaptive Encoding-based Particle Filter

1. Initialisation, t = 0.
– Synchronize the particle filters by equating the random seeds.
– For each sensor k = 1, . . . , K
• For i = 1, . . . , N , sample x

(i)
0 ∼ p(x0) and set t = 1.

2. Quantizer training step

– For each sensor k = 1, . . . , K
• For i = 1, . . . , N , sample x̃

(i)
t ∼ p(xt|x(i)

0:t−1) and ỹ
(i)
t ∼ p(yt|x̃(i)

t).

• For each element yk,j
t of the data yt, train a Dk,j element quantizer

qk,j
t using the Lloyd-Max algorithm applied to the data set

{ỹ(i)
t ; i = 1, . . . , N} using the error function

N∑
i=1

(
p(ỹ

(i)
t |x̃(i)

t)− p
(
ỹ

k,j,(i)
t , qk,j

t (ỹ
k,j,(i)
t) |x̃(i)

t

))2

. (1)

3. Quantization
– For each sensor k, quantize yk

t using the set of quantizers qk
t = {qk,j

t } to

form quantized data
(
yk

t

)′
.

– Distribute the quantized data y′
t = {(yk

t

)′
; k = 1, . . . , K} to all sensors.

4. Importance sampling
– For each sensor k = 1, . . . , K

• For i = 1, . . . , N , sample x̃
(i)
t ∼ π(xt|x(i)

0:t−1,y
′
0:t), and set x̃

(i)
0:t =(

x
(i)
0:t−1, x̃

(i)
t

)
.

• For i = 1, . . . , N , evaluate the (approximate) importance weights

w̃
(i)
t =

p(y′
t|x̃(i)

t) p(x̃
(i)
t |x(i)

t−1)

π(x̃
(i)
t |x(i)

0:t−1,y
′
0:t)

.

• Normalize the importance weights.

5. Selection step
– For k = 1, . . . , K, resample with replacement N particles {x(i)

0:t; i =

1, . . . , N} from the set {x̃(i)
0:t; i = 1, . . . , N} according to the importance

weights.
– Set t← t + 1 and go to step 2.

Fig. 2. High-level algorithm description of the distributed particle filter that performs
adaptive encoding of sensor data (see Section 3.3).

11

k does not have access to yt. Sensor k requires a quantizer qk
t that maps yk

t

to a quantized value. In the algorithm proposed here, we take this one step
further, and consider scalar quantizations, training qk,j

t at each time step to
quantize individual measurements yk,j

t . In training qk,j
t , we use the error func-

tion:
∫
p(yt|x0:t−1)

[∫ (
p(yt|xt)− p(yk,j

t , qk,j
t (yk,j

t)|xt)
)2

dxt

]
dyt, where yk,j

t

denotes all elements of byt except yj,k
t . The particle approximation to this error

function is:

N∑
i=1

N∑
j=1

(
p(ỹ(i)

t |x̃(j)
t)− p(ỹ k,j,(i)

t , qk,j
t (ỹ k,j,(i)

t)|x̃(j)
t)

)2

. (2)

In the simulations in this paper we have used the Lloyd-Max approach to
train the scalar quantizers [11, 12] (it is also possible to consider computation-
ally simpler methods or entropy-coded quantization approaches [13]). Note that
using the error function (2) involves the evaluation of N2 likelihoods upon every
iteration of the algorithm. We have observed in simulations that reducing this to
N evaluations by only including the terms i = j results in similar filter perfor-
mance. Our goal is to determine a good quantizer (not necessarily the optimal
quantizer), so we can also limit the number of training iterations. However, even
with these modifications, the training of several Lloyd-Max quantizer is a com-
putationally demanding exercise. This results in limitations on the viable data
dimension per time step for this filtering approach.

Once the quantizers have been trained at all sensor nodes, the sensor data are
quantized to y′

t � qt(yt) and distributed throughout the network. The sensors
then perform the standard particle filtering steps (importance sampling, weight
evaluation, and particle selection) based on the quantized data y′

t. Figure 2
presents the algorithm in high-level pseudo-code format.

The only reduction in communication cost compared to the dissemination of
the raw data lies in the achievable compression in the quantization. The com-
munication cost in bits per time step, neglecting overhead bits, is

∑K
k=1 DkMk,

where Dk is the number of bits required after quantization andMk is the number
of communication hops required to send sensor k’s quantized data throughout
the sensor network. As illustrated in Section 5, substantial compression can be
achieved whilst maintaining estimation accuracy. The algorithm’s computational
complexity grows linearly in data dimension (the quantizer training is the dom-
inant computational expense), and this restricts the feasible size of the sensor
network for real-time operation.

4 A Hierarchical Sensor Network

For the remainder of the paper, we focus on the distributed particle filtering
algorithm based on adaptive data encoding. It is clear from the preceding section
that the algorithm becomes impractical for a large number of sensors. Every
sensor must maintain and train a codebook for each scalar measurement in the

12

network, and the computational expense incurred in this exercise soon becomes
overwhelming. Moreover, every sensor must stay awake and participate in the
algorithm every time step, so that filters do not lose synchronization. In this
section, we describe the high-level structure of a hierarchical sensor network
that addresses these issues.

In the hierarchical network, we consider that there are two classes of sensor
nodes, which we denote classes A and B for convenience. Class A nodes have
substantially more energy and computational power than the more numerous
class B nodes. Class B nodes are responsible for sensing the monitored envi-
ronment and reporting their measurements to a single parent class A node. We
assume that the density of class A nodes is sufficient that each class B node can
directly communicate with at least one class A node. Class A nodes are respon-
sible for performing all computation and managing the class B sensor nodes.
Class A nodes are always active; a class B node is activated for measurement
and communication by its parent node.

Due to the limitations of the adaptive encoding particle filtering algorithm,
the class A nodes, numbered 1, . . . ,K only activate a small number of class B
nodes (for measurement) per time step. We denote this set of sensors by Vt.
Other class B nodes may be active for the purpose of relaying messages between
the set of class A nodes.

The class A nodes implement the distributed particle filtering algorithm de-
scribed in Section 3.3. At time t = 0, the algorithm is initialized by sampling
particles at each class A node from p(x0), and a random set of sensors V1 is
selected for the first measurement. Each sensor v ∈ V1 makes its set of measure-
ments yv

1 and transmits the data to its parent class A node. The transmission
at this step involves fine quantization (of the order of 16 or 32 bits per mea-
surement). The K class A nodes then perform the distributed particle filtering
algorithm exactly as described in Figure 2. The nodes only generate a small
number of linear quantizers, one for each data measurement made by the active
class B sensor nodes, so the computational requirements are manageable. The
exchange between the class A nodes involves highly compressed data (2-5 bits
per measurement).

At a subsequent time step t, instead of a random set of sensors being activated
for measurement, the class A nodes decide upon a set based on a prediction of
which sensors will provide the most informative measurements. Algorithms for
performing this type of sensor management exercise have been described in [1,9,
14]. As the decision is made on the basis of a common particle filter, every class
A node is aware of the set of active sensor nodes that will perform measurement
one step ahead in time. This is important because it means that the number of
bits required for data labelling is minimal, and related to the cardinality of the
active set rather than the total number of sensors. The number of information
bits that need to be transferred throughout the network is

∑K
k=1 Dk, where Dk

is the number of bits required by class A node k. This expression excludes the
initial finely-quantized communications between the active class B sensors and
their parents.

13

5 A Simulation Example: Tracking a Manoeuvring
Object

In this section, we investigate an example of the application of the adaptive
encoding distributed particle filter using the hierarchical sensor network frame-
work described in Section 4. We consider the exercise of tracking an object
manoeuvring in a 2-D plane. The dynamic system (a jump-state Markov model)
is described by an initial distribution p(u0, θ0,x0) and the update equations

ut ∼ p(ut|ut−1), (3)
θt = θt−1 + c(ut) + vt, (4)
xt = xt−1 +m[cos θt, sin θt]. (5)

Here ut ∈ 0, 1, 2 is a time varying state, indicating no turn (c(0) = 0), left-turn
(c(1) = 0.1 radians), and right-turn (c(2) = −0.1 radians), respectively. The
angle of motion is determined by θt, vt is the innovation noise (Gaussian), and
xt is the position. The velocity is constant and specified by m.

−64 −32 0 32 64
−64

−32

0

32

64

Fig. 3. An example realization of the sensor network for the simulation in Section 5.
Solid squares indicate class A nodes at fixed locations, equally spaced in the plane.
Circles are class B angle-measurement nodes; stars are class B distance-measurement
nodes. Class B nodes are uniformally distributed. The thin lines indicate the class A
parent of each class B node. The thick line indicates an example trajectory of the object
over 500 time steps, starting at the solid circle and moving to the triangle.

In our system, there are two types of class B nodes: those capable of measur-
ing the angle of the object’s position relative to the node φt, and those capable

14

of measuring distance to the object rt. The observation equations for a node v
with position gv are:

φv
t = arctan(xt − gv) + nt (6)

rv
t = max(||xt − gv||+ st, 0) (7)

The noise terms, nt and st are modelled as zero-mean Gaussian with variances
σ2

n and σ2
s , respectively.

We performed simulations with 128 class B sensors, 64 of each type, and
16 class A nodes. The positions of the class B nodes in the plane (covering
[−64, 64] × [−64, 64]) were random, drawn according to a uniform distribution.
The class A nodes were equally spaced across the plane. Figure 3 depicts an
example realization of the sensor field.

In our studies, the object was tracked for 500 time steps. The object’s initial
position was determined by a Gaussian distribution centred at [2,2] and diag-
onal covariance entries set to 1. The initial angle of motion of the object was
determined by a Gaussian, centred at π/4, with variance 0.01, and u0 was set
to 0. The object moved with a constant velocity m = 0.5, and the innovation
noise had variance 0.001. The observation noise in our simulations was gener-
ated by setting σn = 0.02 and σs = 0.02. The state transition probability matrix
p(ut|ut−1) was set as: 0.75 0.65 0.65

0.125 0.3 0.05
0.125 0.05 0.03

At any time step, the class A nodes activate eight class B nodes for measure-
ment, including four angle-measurement sensors and four distance-measurement
sensors. These are chosen as the closest (of their kind) to the predicted position
of the object, the prediction being made one step-ahead.

We conducted a Monte Carlo study of the performance of the adaptive en-
coding distributed particle filter. The study involved S = 20 realizations of the
sensor field and the object path. For each study, the particle filter was applied
with REP = 10 different random seeds for initialization. In our simulations, the
particle filters knew the model parameters, and N , the number of particles per
filter, was set to 500. We examined the performance for three fixed settings of
Dv, the number of bits used for data representation by each active class B sensor
(and per measurement in this case). We compared the estimation performance
of Dv = {2, 3, 4} to the raw data case, where we use 16 bits to represent each
measurement via straightforward quantization over the feasible range.

For each setting of Dv, we calculated the mean-squared error between the
true object position and the particle filter-based mean-square estimate of object-
position. This was derived for each realization s by averaging over the REP
instances of the algorithm. Based on this we obtained a log mean squared-error
measure:

LMSEt = log
1
S

S∑
s=1

[
1

REP

REP∑
r=1

||xt,s − x̂t,r,s||2
]

(8)

15

0 10 20 30 40 50 60
−9

−7

−5

−3

−1

Time

LM
S

E

Fig. 4. Plot of mean squared error performances of the adaptive encoding distributed
particle filter at various quantization levels. Dashed line corresponds to a 2-bit quan-
tization; solid line to a 3-bit quantization; dotted line with * markers to a 4-bit quan-
tization; solid line with diamond markers to a non-adaptive 16-bit quantization.

Figure 4 plots the LMSE for the four quantization levels over the first 60 time in-
stants. The algorithm performance is as expected, with estimation performance
improving (exponentially) as the number of bits increases. The loss in accuracy
through the use of four-bit encoding as opposed to non-adaptive 16-bit quantiza-
tion of the raw data is not particularly substantial, particularly considering the
reduction in communication cost. The total number of information bits trans-
mitted by the sensor network is 128 + 8DvM , where M is the number of hops
needed to send a measurement to all class A nodes. In moving from the non-
adaptive 16-bit to the adaptive 4-bit quantization, we achieve (approximately)
a four-fold saving in communication.

6 Discussion and Conclusions

We have presented two distributed particle filtering algorithms for tracking pos-
terior distributions in Markovian state-space models using sensor networks. The
first algorithm is applicable to state-space models for which it is possible to fac-
torize the likelihood function and approximate the factors using low-dimensional
parametric models. It results in a substantial communication saving in situa-
tions where the data dimension per time step is large. The second algorithm
uses distributed particle filters to adapt linear quantizers for individual sensor
measurements. Whilst the latter algorithm is applicable to more general mod-
els, it cannot be applied when the data dimension is high, because substantial

16

computation is needed to train efficient quantizers. In light of this, we described
a hierarchical sensor network that supports implementation of the algorithm.

Both algorithms have several limitations and the treatment in this paper has
glossed over some issues. The algorithms require that each sensor has a knowledge
of the global likelihood function. Neither algorithm provides a mechanism for
handling local state parameters (such as sensor position) separately from the
global state. For the parametric approximation-based algorithm, methods for
identifying and training appropriate parametric models for the likelihood factors
remain to be developed. In future research, we hope to provide a more refined
characterization of the state-space models for which the parametric approach is
applicable. In the case of the adaptive encoding algorithm, the restriction to a
small data dimension is frustrating. We are currently exploring data aggregation
and vector quantization strategies in our attempts to alleviate the restriction.

References

1. Liu, J., Liu, J., Reich, J., Cheung, P., Zhao, F.: Distributed group management
for track initiation and maintenance in target localization applications. In: Proc.
IEEE Conf. Information Processing in Sensor Networks, Palo Alto, CA (2003)

2. Mutambara, A.: Decentralized estimation and control for multisensor systems.
CRC Press, Boca Raton, FL (1998)

3. Kam, M., Zhu, X., Kalata, P.: Sensor fusion for mobile robot navigation. Proc.
IEEE 85 (1997) 108–119

4. Rosencrantz, M., Gordon, G., Thrun, S.: Decentralized sensor fusion with dis-
tributed particle filters. In: Proc. Conf. Uncertainty in Artificial Intelligence, Aca-
pulco, Mexico (2003)

5. Anderson, B., Moore, J.: Optimal Filtering. Prentice-Hall, New Jersey (1979)
6. Bucy, R., Senne, K.: Digital synthesis of nonlinear filters. Automatica 7 (1971)

287–298
7. Doucet, A., de Freitas, N., Gordon, N., eds.: Sequential Monte Carlo Methods

in Practice. Series: Statistics for Engineering and Information Science. Springer-
Verlag, New York (2001)

8. Zhao, F., Shin, J., Reich, J.: Information-driven dynamic sensor collaboration for
tracking applications. IEEE Signal Processing Magazine 19 (2002) 61–72

9. Shin, J., Guibas, L., Zhao, F.: A distributed algorithm for managing multi-target
identities in wireless ad-hoc sensor networks. In: Proc. IEEE Conf. Information
Processing in Sensor Networks, Palo Alto, CA (2003)

10. Pitt, M., Shephard, N.: Filtering via simulation: auxiliary particle filters. J. Amer.
Stat. Assoc. 94 (1999) 590–599

11. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Info. Theory 28 (1982)
129–137

12. Max, J.: Quantizing for minimum distortion. IRE Trans. Info. Theory 6 (1960)
7–12

13. Gersho, A., Gray, R.M.: Vector Quantization and Signal Compression. Kluwer
Academic Press, Boston MA (1992)

14. Kreucher, C., Castella, K., Hero, A.O.: Multitarget sensor management using
alpha divergence measures. In: Proc. IEEE Conf. Information Processing in Sensor
Networks, Palo Alto, CA (2003)

