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ABSTRACT
We address the problem of efficient end-to-end network mon-
itoring of path metrics in communication networks. Our goal
is to minimize the number of measurements or monitors re-
quired to maintain an acceptable estimation accuracy. We
present a framework based on diffusion wavelets and non-
linear estimation. Our procedure involves the development
of a diffusion wavelet basis that is adapted to the monitor-
ing problem. This basis exploits spatial and temporal corre-
lations in the measured phenomena to provide a compress-
ible representation of the path metrics. The framework em-
ploys nonlinear estimation techniques usingℓ1 minimiza-
tion to generate estimates for the unmeasured paths. We de-
scribe heuristic approaches for the selection of the paths that
should be monitored, or equivalently, where hardware mon-
itors should be located. We demonstrate how our estimation
framework can improve the efficiency of end-to-end delay
estimation in IP networks and reduce the number of hard-
ware monitors required to track bit-error rates in all-optical
networks (networks with no electrical regenerators).

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Operations—
Network monitoring; E.4 [Coding and Information
Theory]: Data compaction and compression
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1. INTRODUCTION
Direct monitoring of a network – either at the path

level or the link level – does not scale in any prac-
tical setting. For the past decade, researchers have
been actively investigating techniques for inferring net-
work characteristics from incomplete or indirect mea-
surements [6,20]. This paper describes a scheme for es-
timating performance metrics such as delay or loss rates
on many end-to-end paths in a network using measure-
ments taken on only a few of these paths. Similar to
related previous work [3, 5], we exploit the notion that
the performance on two overlapping paths should be
correlated. For example, delay statistics of two paths
with at least one link in common are correlated because
packets from both flows are being delayed in a common
queue. Similarly, in all-optical networks, two lightpaths
with at least one link in common are correlated due to
crosstalk across wavelengths. For either of these exam-
ples, it is possible to predict the performance on un-
measured paths using measurements of a few paths and
knowledge of routing and the network topology. In this
paper we also address the topic of exploiting temporal
correlation for path-level performance monitoring.

Our methodology begins with the identification of a
basis, which we design using diffusion wavelets, that en-
ables us to accurately approximate the vector of path
metrics using only a small number of non-zero coeffi-
cients. The coefficients efficiently summarize end-to-
end performance on all paths. Diffusion wavelets gen-
eralize the concept of wavelets by providing a multi-
scale decomposition of functions defined on a graph [7].
The diffusion wavelet framework is applicable to a wide
range of monitoring scenarios and allows us to simulta-
neously take advantage of spatial and temporal corre-
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lation among the monitored paths. Posing the network
monitoring problem as a wavelet coefficient estimation
exercise allows us to make use of recently-developed,
powerful tools from the theory of compressed sensing
for estimating a sparse vector using a relatively small
number of measurements.

The rest of the paper is organized as follows. Sec-
tion 2 formally defines the monitoring problem and
framework introduced in this paper, and provides an
overview of diffusion wavelets and nonlinear estima-
tors from the theory of compressed sensing. Section 3
describes how we use diffusion wavelets to construct
compressible representations of the path metric func-
tions. Section 4 discusses heuristics for selecting the
paths to monitor and deciding where to place monitor-
ing devices. Section 5 and Section 6 provide case stud-
ies of the application of our monitoring and estimation
framework. The estimation of mean end-to-end Inter-
net queuing delays is explored in Section 5, and Sec-
tion 6 focuses on monitoring bit-error rate in all-optical
networks. Section 7 provides concluding remarks and
indicates avenues of future research.

2. COMPRESSED NETWORK
MONITORING FRAMEWORK

2.1 Problem Formulation and Notation
Our goal in this paper is to accurately monitor perfor-

mance metrics (e.g., end-to-end delays in an IP network
or bit-error rates in an all-optical network) on a collec-
tion of np end-to-end paths using measurements on a
subset of these paths. The size of the subset, ns < np,
is (ideally) much smaller than the total number of paths.
Let y(k) ∈ R

np denote the vector of performance values
at time instant k on paths indexed from 1 to np; i.e.,

the ith component, y
(k)
i , is the performance value on

the ith path at time k. Let y
(k)
s ∈ R

ns denote the per-
formance values we observe on the subset of measured
paths. Given y

(k)
s , our task is to estimate y(k).

The measured and complete set of performance values
are related via an ns×np binary-valued selection matrix,

A(k), defined such that A
(k)
i,j = 1 if the ith measured

path corresponds to the jth entry of y(k); i.e., (y
(k)
s )i =

(y(k))j . Using this notation, we have y
(k)
s = A(k)y(k),

where each row of A(k) contains exactly one non-zero
entry (identifying which paths we measure), and each
column of A(k) contains at most one non-zero entry (we
measure each path at most once in each time-step).

In practice, we would like to monitor path-level
performance over a sequence of time-steps, k =
1, . . . , τ . Stacking the path-level performance vectors
from multiple time-steps into one vector, we write

y = [y(1)T
, . . . , y(τ)T ]T , and similarly, for the mea-

sured performance at each time-step we write ys =

[y
(1)
s

T
, . . . , y

(τ)
s

T
]T . It is convenient to combine the

selection matrices from each time-step into a block-
diagonal matrix, A, with the selection matrices at each
time-step, A(1), . . . , A(τ), along the diagonal, so that we
have ys = Ay relating the observations and path-level
performance values over multiple time-steps.

A special case of the monitoring framework occurs
when there is a known linear relationship between the
link and path metrics. Suppose we are monitoring a net-
work with nl links, and assume we are given a np × nl

binary-valued routing matrix, G, where Gi,j = 1 if link
j appears in the ith path and Gi,j = 0 otherwise. Many
relevant performance metrics, including mean delay and
delay variance, satisfy the property that the end-to-end
metric on a path is equal to the sum of the performance
metric of individual links in the path, so we can write
y(k) = Gx(k), where x(k) ∈ R

nl are the link-level met-
rics. This relationship not only provides valuable infor-
mation about the correlation structure, but typically
nl ≪ np, so we can achieve an immediate reduction in
the dimensionality of the estimation task by formulat-
ing the problem in “link-space”, i.e., writing ys = AGx.

2.2 Diffusion Wavelets
Wavelet transforms are a staple of modern compres-

sion and signal processing methods due to their ability
to efficiently represent piece-wise smooth signals (sig-
nals which are smooth everywhere, except for a few dis-
continuities). Traditionally, discrete wavelet transforms
provide a multi-scale decomposition of functions defined
on a regularly sampled interval or grid. A “mother
wavelet” is dilated by powers of two and translated to
obtain orthonormal wavelet bases. However, in the con-
text of network monitoring, we seek to efficiently repre-
sent a function (performance metrics) defined on a net-
work topology which does not, in general, have a regular
structure, so standard wavelets cannot be directly ap-
plied. Crovella and Kolaczyk [8] describe one method of
constructing wavelets on a graph for decomposing traffic
on an arbitrary topology based on dilating and scaling
a mother wavelet, similar to the traditional approach.
The primary shortcoming of this approach is that it
does not lead to an orthogonal basis, limiting its use as
a mechanism for generating a compressible representa-
tion of a network function. More recently, Coifman and
Maggioni [7] have introduced diffusion wavelets, gener-
alizing the concept of wavelets to functions supported
on a graph through the use of diffusion operators.

The construction of a diffusion wavelet basis is based
on a diffusion operator, D, defined on the support of the
underlying graph. For a graph with n nodes, D is an
n×n matrix where Di,j > 0 if and only if there is a link
between nodes i and j. The magnitude of Di,j models
the strength of the correlation or similarity between the
function values at nodes i and j. Much like traditional
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wavelets, diffusion wavelets recursively split the space
over which the signal is observed into smaller, orthogo-
nal subspaces. Consider a function f ∈ R

n defined on a
network of n nodes, where fi corresponds to the value
at node i; the function is initially defined on the space
V0 = R

n. At scale j = 1, . . . , L, for some pre-specified
depth L, the diffusion wavelet construction recursively
splits the space Vj into a scaling subspace, Vj+1, and
a wavelet subspace, Wj+1, by analyzing eigenvectors of
the jth dyadic power of the diffusion operator, D2j .
The matrix D2j is, intuitively, related to averaging or
smoothing over neighborhoods of radius 2j hops in the
original graph, and the study of eigenvectors of this
matrix is analogous to Fourier spectral analysis on a
regular space. The ensuing orthonormal wavelet basis,
adapted to the representation of the data (function val-
ues) over the graph, is obtained by concatenating bases
for VL and the wavelet subspaces, {Wj}L

j=1. We refer
the reader to [7] for the precise details of the construc-
tion.

Let Bj ∈ R
n, j = 1, . . . , n, denote the final collection

of orthonormal wavelet basis vectors. A function on the
graph can be represented as a vector y ∈ R

n, where yi

is the value at the ith node, and the wavelet decomposi-
tion of y is given by y =

∑n
j=1 βjBj , where βj = yT Bj

is the jth wavelet coefficient. Stacking the coefficients,
βj , into a vector, β, and concatenating the basis vectors,
{Bj} into an n×n matrix, B, we can write y = Bβ. In
the following sections we propose diffusion operators D
designed such that the corresponding wavelet represen-
tation of a path performance vector, y, is highly com-
pressed; i.e., most of the energy in y can be captured
in a few βj . To be more precise, let us rearrange the
wavelet coefficients in order of decreasing magnitude so
that

|β(1)| ≥ |β(2)| ≥ · · · ≥ |β(n)|,

and define the best m-term approximation of y in B
to be ŷ(m) =

∑m
j=1 β(j)B(j). We say that y is com-

pressible in B when the approximation error ‖y− ŷ(m)‖
decays rapidly as a function of m, meaning that y is
efficiently represented using only a few basis vectors,
B(1), . . . , B(m). In this case, we only really need to esti-
mate values of the few large coefficients in order to ob-
tain a high quality estimate of end-to-end performance
on many paths. Moreover, in this setting we can make
use of recent breakthroughs in the area of nonlinear es-
timation of compressible functions to quantify the num-
ber of paths that need to be measured to obtain esti-
mates of performance at a specified level of accuracy.

2.3 Estimation of Compressible Signals
Now, suppose we have made observations ys of the

end-to-end performance for a subset of the paths we
are interested in, and we wish to estimate y. We have

ys = Ay, where A is the selection matrix, indicating
which paths we observe directly. In the following sec-
tions we describe diffusion wavelet bases B which effi-
ciently compress the vector of end-to-end path metrics.
We can express y in terms of its wavelet coefficients as
y = Bβ, where most of the energy in y is captured
in a few entries of β. Combining this expression with
the expression for ys above leads to ys = ABβ. This
begs the question: can we accurately recover the vector

of coefficients, β, from measurements ys? In particu-
lar, we would like to take advantage of the fact that β
only has a few large entries, and most are very small in
magnitude or even zero.

A straightforward approach to obtaining a sparse es-
timate of β is to solve an ℓ0 optimization of the form:

β̂ = argmin
β

‖β‖0 subject to ys = ABβ,

where ‖β‖0 counts the number of non-zero entries of β.
It is well known that this problem is NP-hard, requir-
ing one to enumerate all possible subsets of non-zero
coefficients.

It has recently been shown that the solution to a sim-
pler ℓ1 optimization problem,

β̂ = argmin
β

‖β‖1 subject to ys = ABβ, (1)

is equivalent to the ℓ0 problem if certain conditions on
A, B, and β are satisfied [2, 11, 14]. Here, ‖β‖1 =∑n

i=1 |βi|. Because the ℓ1 optimization (1) is convex,
it is computationally tractable, and a solution can be
obtained using linear programming.

3. COMPRESSIBLE REPRESENTATIONS
In order to construct a compressible representation,

we develop a diffusion wavelet basis where the diffu-
sion operator is related to the anticipated correlation
between path metrics. We first define the graph of in-
terest G = (V , E). We are measuring a performance
metric function defined on the physical paths of the
network. Accordingly, the vertex set V for our diffu-
sion wavelet basis has one vertex for each path at each

timestep, V(k) = {v(k)
i }np

i=1, over the estimation interval
k = 1, . . . , τ .

3.1 Single Timestep: Spatial Diffusion
First consider the case where τ = 1, that is, ns routes

are observed during one timestep k and we want to re-
cover the metrics of the non-observed routes immedi-
ately. Let G(k) = (V(k), E(k)) be the undirected graph
over which we apply the diffusion wavelet framework.
Notice that, in this work, the terms “vertex” and “edge”
refer exclusively to the graph G(k) defined in this sec-
tion, while the terms “node”, “link”, and “path” refer
to the physical nodes (e.g., routers), links and paths
of the network; therefore, we can refer to “edges” be-
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tween “paths”. The graph G(k) is defined as follows.
The vertices V(k) of G(k) correspond to the paths of the
network of interest, and there is an edge between the
vertices vi and vj if and only if paths i and j share
at least one link. Therefore, vertices of the graph are
neighbors when their corresponding paths share a link.
The function to be studied over G is the set of metrics
associated with the vertices (paths).

We assign a weight wi,j to the edge between the ver-
tices vi and vj to model the correlation between path
metrics on routes that share the same links. The choice
of these weights is problem-dependent and is deter-
mined by the anticipated relationship between link and
path metrics. It effectively forms an a priori model for
the correlation structure in the estimation problem.

For concreteness, we outline a methodology for choos-
ing weights that is appropriate when there is an approx-
imately linear relationship between path and link met-
rics. In this setting, it is reasonable to choose a weight
that is proportional to the fraction of shared links in
the two paths. Consider two paths i and j, and denote
by Ri the set of links used by path i. We define the
weight wi,j associated with the edge between vi and vj

as:

wi,j =
|Ri ∩Rj |
|Ri ∪Rj |

. (2)

More weight is given to edges between paths that share
many links, thereby emphasizing the spatial correlation
intrinsic to end-to-end performance metrics — these
edges are thus “spatial correlation edges”, as opposed
to the “time correlation edges”, defined next.

The diffusion wavelet procedure in [7] requires a diffu-
sion operator D(k) to generate a wavelet representation
over G(k). To obtain a diffusion operator from the con-
struction described above, we apply Sinkhorn balanc-
ing [18] to the matrix of weights, [w], to form a doubly
stochastic matrix, D.

3.2 Multiple Timesteps: Incorporating Time
Diffusion

When metrics change slowly with time, relative to
the sampling rate, as is the case with mean end-to-end
delays or BERs on lightpaths, time-correlation between
the samples can be exploited to improve estimation ac-
curacy. We account for time correlation in the diffusion
operator as follows. Let G = (V , E) be the graph with
vertex set,

V =

τ⋃

k=1

V(k) , (3)

which is the union of the paths of the network at each
timestep, and with edge set E such that:

E =

(
τ⋃

k=1

E(k)

)
∪
{(

v
(k)
i , v

(k+1)
i

)}

i∈{1,...,np},k∈{1,...,τ−1}
.

In the edge set, the first term,
⋃

k E(k), is the union of
the edge sets for each individual timestep, as introduced
in the previous subsection. The second term contains
time-correlation edges, which connect the subsets V(k)

of the vertex set V together: an edge is present between
a path at timestep k and the same path at timestep
k + 1. We keep the weights already defined in the pre-
vious section for the edges between paths at the same
timestep (spatial correlation edges) and we only need
to define the weights for the inter-timestep edges.

With the a priori assumption that time correlation
has the same strength across the network, we assign a
weight of wt to each of these new edges (time correlation
edges), except for the edges between vertices of V(1)

and V(2), and V(τ−1) and V(τ), which are assigned a
weight of 2wt (for balancing purposes). The specific
value of wt depends on the anticipated relative strengths
of spatial and temporal correlation. We use a value of
0.5 in the examples described later in the paper, which
reflects expectation of reasonably strong correlation; it
is equivalent to the anticipated spatial correlation for
paths that share half of their combined links.

The weight matrix w ∈ R
npτ×npτ is then defined

as the block matrix whose elements are equal to the
weights defined above (Inp

is the np × np identity ma-
trix):

w =





D(1) 2wtInp
0 · · · 0

wtInp
D(2) wtInp

. . .
...

0
. . .

. . .
. . . 0

...
. . . wtInp

D(τ−1) wtInp

0 · · · 0 2wtInp
D(τ)





.

(4)
Again, we perform Sinkhorn balancing on [w] in order
to obtain a doubly stochastic matrix D, which we use
when constructing a diffusion wavelet basis.

3.3 Link-level Representations
A special case of our framework arises when there

is a strictly linear relationship between path and link
metrics. A good example is mean delay; the delay on
links that share many routes is often strongly correlated
because the same traffic sources are generating backlog
in queues. In this case, it becomes valuable to formulate
the problem in “link-space”. In this formulation we
have ys = AGBβ, where G is the np ×nl binary-valued
routing matrix, B is an nl × nl diffusion wavelet basis,
and β is now a vector of nl coefficients. The task is
still the estimation of y, and it should be emphasized
that although the by-product of this formulation is an
estimate of x, this is not the goal.

In general, nl ≪ np so the link-space formulation
significantly reduces the dimensionality of the prob-
lem. This formulation also means that any solution
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automatically satisfies the known relationships between
path and link metrics. In the path formulation outlined
above, these relationships would have to be incorpo-
rated as constraints in the ℓ1-minimization (1), making
the optimization problem significantly more challeng-
ing. The derivation of a suitable diffusion operator pro-
ceeds exactly as described for the path case, but now
the nodes in the graph are links in the physical network
and the edges are weighted according to the fraction of
shared paths.

4. PATH SELECTION
So far, we have discussed why and how it is pos-

sible to accurately estimate end-to-end metrics from
a limited number of observations. However, we have
not discussed how to select which routes should be ob-
served. This problem is challenging and the appropri-
ate approach depends on the measurement constraints
or costs. We will examine two scenarios and propose
heuristics. In the first scenario, we consider that the
cost (or constraint) is the average number of measure-
ments made per timestep. In this scenario, we do not
constrain which paths are measured at each timestep.
Rather, the set of paths measured can change from
timestep to timestep. In the second scenario, we con-
sider the case where the constraint is the number of
monitoring devices and we must decide where to place
them in the network. Each monitoring device can mea-
sure any incoming path on its interface.

4.1 Constraint on Number of Measurements
First we consider the case where the only constraint is

on the total number of paths to be selected over a fixed
number of timesteps. For this scenario, we adapt the
path selection technique presented by Chua et al. in [5]
to include our correlation model. The path selection
procedure in [5] strives to minimize the mean square of
the prediction error of a linear end-to-end delay estima-
tor. The exact minimization procedure is NP-complete
(it amounts to the problem of subset selection) and
hence heuristics are needed.

Chua et al. propose a heuristic that consists of finding
the rows of the routing matrix G that approximate the
span of the first ns left singular vectors of GCl, where Cl

is a non-singular matrix that satisfies Σl = ClC
T
l . For

example, Cl = Σ
1/2
l , and Σl is the covariance of x. Note

that the estimation methodology in [5] is restricted to
the case where path metrics are a linear combination of
link-level performance values. In this case we can write
y = Gx, which leads to the incorporation of a link-
level covariance matrix in this path selection procedure.
In the case where this covariance matrix is not known,
reasonable results can be obtained by setting Σl = I.
An algorithm (see Alg. 1) that implements this heuristic
can be found in [13].

Algorithm 1 Path selection
Input: Matrix Cp

Number of paths to select ns

Output: Selection matrix A

1: Perform singular value decomposition (SVD) on Cp:
Cp = USV T where S contains the singular values
in descending order.

2: Perform QR decomposition with column pivoting
on the first ns columns of U : QR = UT

(1,...,ns)P
T .

3: return A = P(1,...,ns), the matrix formed from the
first ns columns of P .

The intuition behind this heuristic is that most of the
energy of the path metric signal should reside in the
space spanned by the ns left singular vectors of GC.
Identifying a set of paths that approximately span this
space is thus a desirable goal. Here, we do not have
access to the link covariance matrix, but the diffusion
operator provides a model of the path-level covariance,
Σp. We therefore set Σp = Dτ (recall D is the diffusion
operator and τ the number of timesteps used to account
for time-correlation). We then strive to identify a subset
of rows of G that approximately spans the same space as

the first ns left singular vectors of the matrix Cp = Σ
1/2
p .

In the case of a link-level representation, we set Σl = Dτ

and use Cp = GCl, with Cl defined as above. Path
selection is performed using Algorithm 1.

4.2 Constraint on Number of Monitors
In this scenario, there is a more restrictive constraint.

We have a limited number of monitoring devices, M ,
and we must choose where to place them. Our intuitive
goal is the same as for the previous scenario: to ap-
proximately span the space where most signal energy is
expected to lie. The same algorithm is applicable, but
there is not a direct mapping from ns to M , because
the number of monitors required to measure ns paths
varies according to how many of the paths terminate at
the same interface. We therefore iterate, running Al-
gorithm 1 repeatedly for increasing values of ns until
M monitors are used. The resultant procedure is de-
scribed by Algorithm 2. The output of the algorithm is
a selection matrix A and a set of monitoring locations
Es.

5. MEAN END-TO-END DELAYS
To illustrate the estimation technique presented in

this paper, we use experimental delay data collected on
the Abilene network depicted in Fig. 1. The network
consists of 11 nodes and 30 unidirectional links. Mean
end-to-end delay measurements are collected between
every pair of nodes over 400 five-minute intervals. There
are thus 121 path metrics to be estimated at each time
step. Owing to the large scale of the Abilene network,
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Algorithm 2 Monitor location selection
Input: routing matrix G, covariance matrix Cp

number of monitors to select M
Output: selection matrix A, monitor set Es.

1: M ′ = M .
2: Perform SVD on Cp: Cp = USV T where S contains

the singular values in descending order.
3: repeat
4: Perform QR decomposition with column piv-

oting on the first M ′ columns of U : QR =
UT

(1,...,M ′)P
T .

5: Let P ′ = P(1,...,M ′) be the matrix formed of the
first M ′ columns of P .

6: Es = ∅.
7: for i=1 . . . M’ do
8: Interpret P ′ as a routing matrix and determine

the last link ℓ on the path described by the ith

row of P ′.
9: Es = Es ∪ {ℓ}.

10: end for
11: M ′ = M ′ + 1.
12: until |Es| = M .
13: return A = P(1,...,M), the matrix formed of the first

M columns of P .

the experimental Abilene end-to-end delays are domi-
nated by the propagation delays; those delays can be
determined accurately using fiber maps. Therefore, we
apply our estimation framework to (end-to-end) queu-
ing delays, which are more variable. To obtain the end-
to-end queuing delays from the end-to-end delays, we
assume that the propagation delay for any path is the
minimum end-to-end delay over the duration of the ex-
periment for this path and subtract off the minimum
for each path. In the remainder of this section, we des-
ignate by “end-to-end delay” the end-to-end queuing
delays.

Fig. 2(a) provides a visualization of one of the wavelet
basis vectors, which allows us to assess how the energy
of wavelets is spatially distributed. In this figure, the
size of each vertex of G is scaled according to the magni-
tude of corresponding wavelet coefficient. Visualization
(vertex layout) of the graph is achieved through the ap-
plication of Isomap [19], where the distances between
vertices is set to the inverse of the weight matrix. The
figure provides a clear depiction of the clustering in-
duced by the routing matrix. There are two primary
clusters of vertices (on the left and the right) corre-
sponding approximately to links appearing primarily in
east-west and west-east paths respectively. Addition-
ally, nodes 14 and 17 (corresponding to links 14 and 17
in Figure 1) are separate from the clusters. These are
two of the more “vertical” links in the network which
are used in both east-to-west and west-to-east paths
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Figure 1: Abilene backbone: 11 nodes, 30 (uni-
directional) links. The numbers are link identi-
fiers.

across the network.
Such graphical representation of wavelet basis vec-

tors can be extended to the multi-timestep case. In the
multi-timestep case, the time dimension is represented
using a third dimension, as is shown in Fig. 2(b) for
8 timesteps. Vertical slices of the plot represent per-
timestep network state while the sequence in time is
represented over the labeled axis. Again, such visual-
ization allows one to study where wavelet energy lies in
space and time. In this case for example, the wavelet
energy is concentrated on four links in the network most
of the time.

We now verify the compressibility of the data. Fig. 3
shows the delays for all links and the absolute values
of the diffusion wavelet coefficients, over τ = 1 (top
panel) and τ = 8 (bottom panel) timesteps, sorted in
descending order. The decay of the delays expressed
in the original basis is very slow and exhibits a heavy
tail. In the diffusion wavelet basis however, the link de-
lays exhibit a power law-like decay, as can be seen by
comparison to the reference functions k 7→ αk−p. More-
over, the coefficients decay at a much faster rate in the
8-timestep case than in the 1-timestep case, indicating
the value of incorporating time-correlation.

We have seen how, in the diffusion wavelet construc-
tion step (Section 2), deeper scales correspond to finer
granularity. In the Fourier domain, deeper scales cor-
respond to higher frequencies. Queuing delays are rel-
atively low frequency signals, especially in the time di-
mension. During the nonlinear estimation step (1),
estimated coefficients corresponding to high frequen-
cies should be encouraged to be small; indeed, in case
of estimation errors (unavoidable when the number of
observations is low compared to the total number of
coefficients to estimate), assigning high values to high-
frequency coefficients leads to poor signal reconstruc-
tion. We make use of the knowledge that the signal to
be estimated has a mainly low frequency spectrum as
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Figure 2: Representation of an example wavelet
basis vector on G. Each vertex depicted here
corresponds to a link of the network, and the
thickness of the edge between vertices i and j
increases relative to the weight wij . Each ver-
tex is scaled according to the magnitude of the
wavelet basis vector at the vertex. Vertex layout
is determined by application of Isomap [19].

follows: we penalize in (1) the coefficients associated
to deeper scales of the diffusion wavelet basis by them
assigning weights ωi, such that (1) becomes:

β̂ = argmin
β

‖β‖1 subject to ys = ABΩβ, (5)

where Ω is the diagonal matrix such that Ωi,i = ωi. Re-
call each βi is a coefficient in the diffusion wavelet basis.
Following the discussion above, the weights should in-
crease with the depth of the scale associated to βi. Here,
we chose a geometric increase in the weights: denoting
by k the scale associated to a diffusion wavelet coeffi-
cient βi, then ωi = αk where α is a parameter that is
fixed to 2 in the remainder of this section.

We show how our estimation techniques performs in
Figure 4, which plots performance as the number of
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Figure 3: Link delays for the complete net-
work over 1 (top panel) and 8 timesteps (bot-
tom panel), sorted by magnitude, in the orig-
inal basis (raw delay values) and in the diffu-
sion wavelet basis (wavelet coefficients magni-
tudes). For comparative purposes, we also show
the power-law decay functions k 7→ αk−p (for con-
stant α, for p = 0.7 in the 1-timestep case, and
p = 1.1 in the 8-timestep case).

paths-per-timestep varies from 1 to 30, with the block-
size set to τ = 1 and τ = 8 timesteps. For the τ = 8
case, end-to-end delays are estimated by blocks. Our
dataset includes measurements for all paths in the net-
work, so we can verify the accuracy of our estima-
tion procedure against ground truth. We assess per-
formance in terms of the relative end-to-end mean de-
lay error, |〈y − yest〉|/〈y〉, and the relative ℓ2 error,
||y − yest||2/||y||2, where ||y||2 =

√∑
i y2

i . Perfor-
mance is averaged over 400 timesteps.

First consider the single timestep case, τ = 1 in
Fig. 4. We verify that the rank of G is equal to the
number of links nl and thus the observation of nl paths
ensures exact recovery of all end-to-end link delays with
any estimation technique we are presenting. Our tech-
nique outperforms linear estimation (network kriging),
with the performance improvement being most substan-
tial when there are few measurements per timestep.

However, to fully harness the power of the nonlinear
estimator, we need to consider data (and its diffusion,
via the diffusion operator) over several timesteps. Now
consider the block estimation case, τ = 8, in Fig. 4;
when less than 10 samples per timestep are collected,
nonlinear estimation in a wavelet basis exhibits much
lower estimation error than the linear estimator in terms
of average end-to-end delay; ℓ2 error is also lowered
when nonlinear estimation in a wavelet basis is used.
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Figure 4: Relative ℓ2 end-to-end delay error
(top) and relative mean error (bottom) as func-
tions of the average number of measurements
per timestep (for τ = 1 and τ = 8), for our non-
linear estimation framework and the linear esti-
mator [5].

In terms of mean end-to-end delay (Fig. 4, bottom
panel), our results suggest that by making only 3 mea-
surements per timestep we can hope to recover the mean
network end-to-end delay with an error of less than 10%.
The error stabilizes for larger number of samples per
timestep and decreases to 0 as the number of samples
per timestep approaches 21.

In the last figure (see Fig. 5), we provide a more de-
tailed insight into the nature of our end-to-end delay
recovery techniques. We show the recovered end-to-end
delay (original data, estimation via nonlinear estima-
tion in the wavelet basis and path selection accounting
for time-correlation, and linear estimation) over time
for 2 different paths. We used τ = 8 and 10 sam-
ples per timestep in the estimation procedure. In Fig 5
(bottom panel), for example, we see that linear estima-
tion severely underestimates the end-to-end delay for
the chosen path. In general, the linear estimation ex-
hibits substantial bias. In contrast, the nonlinear esti-
mator exhibits much less bias but more variability. It
is possible to estimate the bias if we are provided mea-
surements of all link-level queueing delays (or can make
sufficient estimates to form unbiased estimates.) How-
ever, such observations are not always available and we
focus here on the case where estimating the bias is not
possible. In the following section, we study an appli-
cation to our technique where physical constraints on
the observations prohibit the utilization of full-ranked
observations to precompute the bias

The presented nonlinear estimation technique is out-

0

2

4

6

 

 

Original data
Linear estimation
Nonlinear estimation

0 50 100 150 200 250 300 350 400
0

2

4

6

8

Time (timestep)

Q
ue

ue
in

g 
de

la
y 

(m
s)

Figure 5: Comparison between nonlinear esti-
mation and linear estimation of path delays for
two example paths.

performs the standard linear estimation technique. In
terms of computation time, on standard hardware, most
of the time is spent computing the basis B (seconds to
minutes depending on τ for the Abilene topology). This
is a one-time cost since B only depends on the network
topology. The nonlinear estimation part is typically an
order of magnitude slower than linear estimation, how-
ever it only takes tens to hundreds of milliseconds, de-
pending on τ , to estimate a block of end-to-end delays
for all paths (110τ end-to-end delays), making the tech-
nique deployable for real-time monitoring in networks
with tens of nodes.

6. ALL-OPTICAL NETWORK
MONITORING

In this section, we apply the compressive network
monitoring framework derived in this paper to the par-
ticular case of bit-error rate (BER) monitoring in all-
optical networks. We address the problem of monitor-
ing circuit-switched all-optical networks with no wave-
length conversion subject to a variety of physical im-
pairments. More specifically, we tackle the specific case
where signal statistics (which are used to determine sig-
nals’ bit-error rates) can only be measured at certain
locations. This is a key issue in all-optical networks
since the equipment needed to take measurements at
one location is extremely costly. The problem is then
two-fold: given fixed BER monitors and hence the BER
of observed lightpaths, what is the best estimate of the
BERs of unobserved lightpaths? Then, how should
BER monitors be placed to facilitate the estimation
problem?
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All-optical networks are high-speed, optical net-
works where OEO (optical-electrical-optical) conver-
sion, which takes place at the nodes in traditional op-
tical networks (e.g., SONET networks), is removed [21].
In all-optical networks, signal are transmitted in the op-
tical domain with no electrical regeneration from end
to end. In the nodes, which are called optical cross-
connects (OXCs), signals are switched spatially in the
optical domain [10]. The absence of OEO conversion al-
lows (among other benefits) all-optical networks to by-
pass the capacity bottleneck incurred by the relatively
low speed of electronic components, as data process-
ing at 40 Gbit/s and above requires expensive devices.
However, removing OEO conversion results in two main
practical issues for all-optical network operation and
management.

First, signals are propagated over very long dis-
tances without electrical regeneration and physical im-
pairments accumulate as signals propagate in optical
fiber and OXCs. Recently, network-layer techniques,
namely, Routing and Wavelength Assignment (RWA)
techniques, have been harnessed to counter these phys-
ical impairments. Assuming circuit-switched networks
with no wavelength conversion1, a RWA algorithm
chooses a route and a wavelength (the combination of
which is called “lightpath” [4]) to accommodate each
incoming call at call admission time. It is possible to
increase the quality of transmission in optical networks
by using appropriate RWA techniques [15, 16]. In this
paper, we make no assumption regarding the particular
RWA used in the network.

The second major issue in all-optical networks is the
absence of OEO converters, which makes monitoring
difficult. Indeed, in traditional, non all-optical net-
works, signals are detected at each node, allowing error
detection and correction. For example, SONET frames
carry parity bits to detect errors [17]. Monitoring in all-
optical networks is therefore restricted, both in terms of
what can be measured and where it can be measured.
Since electrical signals are not available at intermediate
nodes of a lightpath, only a few optical quantities such
as the optical power of the signal are measurable, and
obtaining such intermediate measurements requires ex-
pensive optical spectrometers. Error detection can only
be performed at the edge of the network, since that is
the only place where electrical conversion is performed.

6.1 All-Optical Network Model
We consider circuit-switched all-optical networks

where data is carried over lightpaths, that is, the com-
bination of a route (assumed to be fixed for the dura-
tion of the call) and a wavelength, fixed from start to

1All-optical packet switched networks and wavelength con-
version devices are currently at the experimental stage and
are not ready for industrialization.

end of the route. Opaque networks, which allow wave-
length conversion within a route, are beyond the scope
of this paper. Links are assumed to be unidirectional
and each link can carry C channels (wavelengths) simul-
taneously. A model for a lightpath is depicted in Fig. 6.
The figure represents the lightpath and the sources of
physical impairments considered in this paper. Other
physical devices such as dispersion compensators and
multiplexers/demultiplexers, which are assumed not to
further degrade the signal’s SNR, are not represented
here. At the source of a call, a transmitter, located at
an OXC, modulates data and sends it over optical fiber
as an on-off keyed signal over a given wavelength. As
it is transmitted over the optical fiber, the signal sus-
tains chromatic dispersion and self-phase modulation
which combine and contribute to intersymbol interfer-
ence (ISI).

The transmitted signal is also subject to nonlinear
crosstalk, that is, the nonlinear interaction with other
signals that are transmitted simultaneously over the
same fiber spans: cross-phase modulation and four-wave
mixing. Optical amplifiers inject amplifier spontaneous
emission (ASE) noise, and the signal is also subject to
node crosstalk, which refers to signal leakages caused,
for instance, by imperfect filtering at the nodes [12]. We
refer the reader to [23], [22], [9], [15] for more details re-
garding the models of ASE noise, nonlinear crosstalk,
node crosstalk, and their combined effects, respectively.
Note that we ignore here a number of physical impair-
ments such as receiver noise and polarization mode dis-
persion, but these effects can be incorporated easily in
our model as additional noise variances, as will be seen
shortly. Fig. 6 also illustrates the physical degradation
of the transmitted signal in terms of an eye diagram;
at the receiver, the eye diagram gets closed, thereby
indicating a degraded SNR.

We denote by µ0 and µ1 the means of the distribu-
tions of the “0” and “1” samples, respectively, and by
σ0 and σ1 their standard deviations. Let

Q =
µ1 − µ0

σ0 + σ1
(6)

be the Q-factor associated with the considered light-
path. The Q-factor can be interpreted as a signal-to-
noise ratio, from which we can derive the bit-error rare,
using a Gaussian assumption [1]:

BER =
1

2
erfc(Q/

√
2). (7)

We model each of the physical impairments described
above by a noise variance in the SNR of the signal. As-
suming these effects are statistically independent, these
variances due to these effects are additive. Let σ2

isi be
the noise variance caused by ISI, σ2

ase the noise variance
caused by ASE noise, σ2

nl the noise variance caused by
nonlinear crosstalk, and σ2

oxc the noise variance caused
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Figure 6: Model for a lightpath in an all-optical network, and sources of physical impairment. The
signal traverses nodes (OXCs), spans of optical fiber and optical amplifiers before reaching destination,
where it is detected by a photodetector — represented here by a square law device. Each device
degrades the SNR of the signal: nodes inject node crosstalk, fiber spans injects nonlinear crosstalk,
and amplifiers inject amplifier (ASE) noise. The BER associated to the signal can be computed from
the distributions of the received “0” and “1” samples, and is related to the appearance of the eye
diagram of the signal.

by node crosstalk, then we have σ2
1 = σ2

isi +σ2
ase +σ2

nl +
σ2

oxc. Therefore, determining the BER of a lightpath
boils down to determining four quantities, which can
be measured at receivers using adapted equipment: µ0,
µ1, σ0, σ1. In the remainder of this section, the BER
estimation for a lightpath designates the simultaneous
estimation of these four quantities.

In this work, we consider that the BER of a lightpath
depends only on the network state, that is, on the net-
work topology and on the lightpaths that are already
established in the network. Indeed, in our model a Q
factor depends on the topology via µ0, µ1, σ0, σisi, σase,
and the crosstalk injected by other lightpaths via σoxc

and σnl. In particular, we consider that the network is
an event-driven system where events are lightpath es-
tablishment and tear-down. A timestep here thus con-
sists in the arrival or the termination of new call. Cases
where BERs vary between calls arrivals and departure,
e.g., because of link failures, can be easily dealt with
by sampling the BER measurements on a regular basis.
Therefore, in this section, we denote by k a timestep

(equivalently, a network state) and call y
(k)
µ0 , y

(k)
µ1 , y

(k)
σ0 ,

and y
(k)
σ0 the vectors of the quantities we want to esti-

mate, respectively, µ0, µ1, σ0 and σ1 for all lightpaths

established at time k. We denote by G(k) ∈ R
n(k)

p ×nl

the routing matrix at time k, where n
(k)
p is the num-

ber of established lightpaths at time k and nl is the
number of (unidirectional) links in the network. Each
row of G(k) corresponds to an established lightpath and

G
(k)
i,j = 1 when lightpath i uses link j. Contrary to the

network delay case, here G(k) varies with k — in par-
ticular, the routing matrices at two different timesteps
may not even have the same number of rows.

Our goal here is to estimate the BER of all lightpaths,
at all timesteps, given a reduced number of lightpaths
have actually been observed. To do so, we are using the

spatial and time correlation between lightpaths. The
spatial correlation is induced by the physical behav-
ior of the network: physical impairments are caused
at the link level and thus the BERs of two different
lightpaths (on different wavelengths) sharing links are
correlated. The time correlation is induced by the sta-
tionarity of the BERs with time; between two timesteps,
only one lightpath can be established or torn down,
thus the BER of a given lightpath between times k and
k + 1 varies little. Before we turn to the estimation
problem, which will again be expressed in the diffu-
sion wavelet framework, we first address the problem
of sample (lightpath) selection, which we recast as the
problem of physically placing BER monitor devices in
an all-optical network.

6.2 BER Monitor Placement
In the context of all-optical networks, it is not pos-

sible to observe samples (that is, to measure the BER
of lightpaths) independently from one time step to the
next. Monitors are physical devices that cannot be
moved from one site to another. Each monitor is lo-
cated at a node, at the end of a link, and all light-
paths that terminate at this link can be observed —
each monitor can thus observe up to C lightpaths si-
multaneously. However, lightpaths traversing but not
ending at a monitored link cannot be observed by the
BER monitor since those lightpaths’ signals remain in
the optical domain. If we could equip all links with a
BER monitor, then the BER of all lightpaths in the net-
work would be known at all times. However, this brute
force monitoring scheme is very expensive and does not
scale. In this section, we consider the scenario where we
are given a fixed budget, or, equivalently, a number M
of BER monitors. The problem is thus to select links
where the monitors should be placed so as to facilitate
the estimation of BERs of the lightpaths that are not
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directly observed. This corresponds to the second path
selection scenario described in Section 4.

Note that the physical constraint that BER monitors
are fixed is actually very restrictive. BER monitors are
fixed before the network starts operating. The num-
ber of observed lightpaths varies with time and it is
possible that no lightpath is observed at all if no es-
tablished lightpath ends at a link where a monitor is
placed. The freedom to observe different (light)paths at
different timesteps is lost. The situation is made sub-
stantially more complex if alternate or adaptive routing
is used. In alternate routing, K > 1 shortest paths are
pre-computed between any two nodes, such that if no
wavelength is available on the shortest path between
two nodes to accommodate some call, another route
can be chosen to accommodate the call; adaptive rout-
ing can be viewed as the case K = ∞. Indeed, with
fixed non-alternate routing (K = 1), we can exploit
foreknowledge of the routes used by lightpaths to place
monitors. This is not possible with alternate or adap-
tive routing. For the purpose of path selection (but
not estimation), we assume that routing is fixed (non-
alternate, non-adaptive) and K = 1. We then compute
the shortest path routing matrix and use this in Algo-
rithm 2, together with Cp derived from the diffusion
wavelet basis, to determine the locations of the moni-
tors.

6.3 Numerical Results
We apply the estimation framework described in Sec-

tion 2 to the bit-error case, estimating in turn µ1, µ0,
σ1 and σ0 for all lightpaths, at all times. We simu-
late the operation of an all-optical network where BERs
are computed according to the model described in Sec-
tion 6.1. Physical-layer parameters for the network are
described in [15]. We simulated the arrival and depar-
ture of 350 calls in a downscaled version2 of the NSF
network, depicted in Fig. 7. This topology contains 14
nodes and 42 unidirectional links. We used C = 8 wave-
lengths in the simulations and adaptive routing. When
a network starts operating, there is no lightpath yet es-
tablished in the network, and when a sufficient number
of calls have arrived, the number of lightpaths in the
network ceases to increase and the network operates in
steady state. Our simulation results only account for
the steady-state operation of the network, not for the
initial period where calls keep arriving without depart-
ing.

We illustrate the compressibility of each of the four
metrics µ0, µ1, σ0 and σ1 for τ = 8 timesteps in Fig. 8.
All metrics are highly compressible in the diffusion wavelet
basis, allowing for the utilization of the nonlinear esti-

2It is currently not possible to build a continental-sized all-
optical network; we modeled a regional-sized network, based
on the NSF topology.
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Figure 7: Down-scaled version of the NSF topol-
ogy (scaling factor: 1/10) used to perform the
simulations. On the figure, the weights repre-
sent the number of 70-km spans for the links.
Each link is bidirectional.
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Figure 8: Compressibility of σ1 for τ = 8
timesteps and L = 10 diffusion wavelet scales.
All three other metrics µ0, µ1 and σ0 exhibit a
similarly fast decay in the diffusion wavelet ba-
sis.

mation framework.
We compare the performance of the nonlinear estima-

tor in a diffusion wavelet basis with the linear estima-
tion framework presented in [5]. Contrary to the non-
linear estimation framework where correlation between
end-to-end metrics is accounted for via the diffusion op-
erator, the linear estimation framework requires that
there exist a linear relation between the link-level and
the end-to-end delay metrics. Although such a linear re-
lation follows directly from the physics of the problem
in the end-to-end delay case, such is not the case here.
However, we can show that, after appropriate transfor-
mations, each end-to-end metric can be approximated
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by a linear combination of link-level metrics.
Recall that G(k) is the routing matrix of the net-

work at timestep k. In Section 2.1, the linear relation
y(k) = G(k)x(k) where y(k) is a per-path metric and x(k)

a per-link metric was induced by the additivity of the
link delays to form end-to-end delays. In the bit-error
rate estimation case, the per-link variances for (node
and nonlinear) crosstalk are additive by construction,
suggesting that in the linear estimation framework we
should estimate the variance σ2

1 rather than estimat-
ing the standard deviation σ1. This insight is veri-
fied in Fig. 9 (bottom-right plot), where we plot the
(end-to-end) variances σ2

isi and σ2
nl as a function of the

length of a lightpath. The variances σ2
i and σ2

ase are ap-
proximately linear with respect to the lightpath length;
therefore the per-link variances xσ1

2 are approximately
additive (accounting for an offset which can be precom-
puted, and which is due to ISI induced by the filtering
process at the receiver), leading to:

yσ1
2 = Gxσ1

2 + σ1
2
0, (8)

where σ1
2
0 is a hardware and signal modulation format-

dependent constant that can be pre-computed and sub-
tracted away.

Similarly, we show in Fig. 9 that µ2
1, µ2

0, and σ2
0 are

also (essentially) linearly related to the number of links,
thereby suggesting the approximations

yµ1
2 = Gxµ1

2 + µ1
2
0, (9)

yµ0
2 = Gxµ2

0
+ µ0

2
0, (10)

yσ0
2 = Gxσ0

2 + σ0
2
0 (11)

where µ10, µ00, σ00 are pre-computed constants that
can also be subtracted from the measurements.

Let y(k) denote the column-vector containing one of
the metrics of interest (yµ1

2 , yµ0
2 , yσ1

2 , or yσ0
2) for all

lightpaths established in the network at timestep k. We
denote by x(k) the corresponding per-link metrics. Since
the constants σ1

2
0, µ1

2
0, σ1

2
0 and µ1

2
0 can be precomputed

and subtracted from y2
σ1

, y2
µ1

, y2
σ0

and y2
µ1

, respectively,
we have a problem of the general form:

y(k) = G(k)x(k). (12)

Consequently, in the following, the nonlinear estima-
tion framework is used to estimate the quantities µ0, µ1,
σ0 and σ1. The linear framework is used to estimate the
transformed versions of µ0, µ1, σ0 and σ1, then µ0, µ1,
σ0 and σ1 are determined by inverting (8)-(11). In both
cases, BERs are determined via Q factors using (6) and
(7).

We now compare the performance of nonlinear esti-
mation in diffusion wavelet bases with that of the linear
estimator presented in [5]. Furthermore, we provide the
following lower bound for the nonlinear estimate. As-
sume that we were given the possibility to observe light-
paths directly in the diffusion wavelet basis. Then, the
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Figure 9: Linearity of the physical impairments
metrics with respect to distance (number of
spans on a lightpath): after a simple transfor-
mation, all metrics are approximately linear,
thereby allowing the utilization of linear estima-
tion.

best (unachievable) ns-term estimator would involve se-
lecting the coefficients with the highest magnitudes in
the diffusion wavelet basis and setting all other coeffi-
cients to zero. The performance of this estimator pro-
vides a lower bound; we cannot directly observe pro-
jections onto the wavelet basis functions and we do not
know, a priori, which ns terms have the highest magni-
tude, so this bound is very loose in general.

Note that, because monitors are fixed, it is possible
that some lightpaths established in the network are left
completely unobserved, that is, that none of the links of
these lightpaths are measured at any time in the moni-
toring period. These completely unobserved lightpaths
are ignored in our evaluations (since BER estimates for
these lightpaths are based on no information and can
only be arbitrary). If a lightpath uses a link that is part
of another lightpath which is directly observed, we call
this lightpath an “estimable” lightpath. It is possible
that an estimator returns a physically meaningless esti-
mate (BER) for an estimable lightpath (e.g., a negative
BER). We call lightpaths for which physically meaning-
ful estimates are returned “estimated lightpaths”. We
show in Fig. 10 the proportion of estimable lightpaths
to the total number of lightpaths in the network over
the simulation time, and the proportion of estimated
lightpaths (again, with respect to the total number of
lightpaths in the network over the simulation time) for
each of the estimators we tested. The monitor place-
ment algorithm is seen to perform adequately: even if
only 5 monitors are used, more than 60% of the light-
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Figure 10: Fraction of estimable and estimated
lightpaths. The BERs of some lightpaths are not
estimable because none of their links is observed
through any other lightpath; among estimable
lightpaths, some are not estimated at all because
the estimates returned by the estimator were
physically meaningless (e.g., negative BER).

paths are estimable. This proportion rises to 90% if 15
monitors are used. The nonlinear estimator estimates
the BER of all of the estimable lightpaths, whereas the
linear estimator consistently leaves the BER of a small
proportion (5–10%) of estimable lightpaths unestimated
unless a very high number (35 and more) monitors are
installed in the network.

In optical networks, only the order of magnitude of
the BER is relevant and hence we work solely with
log(BER) to evaluate the performance of the estima-
tors. We compare in Fig. 11 the performance of the lin-
ear and the nonlinear estimators in the diffusion wavelet
framework for the relative ℓ2 error ||(y − yest)||2/||y||2
(top panel) and the relative mean error |〈y − yest〉|/〈y〉
(bottom panel), where y is the vector containing the
log of the BER for each lightpath, at each time instant.
We also give 5% confidence intervals. The performance
improvement achieved by the nonlinear estimation tech-
nique is largest when few monitors are available. In par-
ticular, when 15 monitors or less are placed in the net-
work (out of a maximum of 42 monitors), corresponding
to a maximum of 90% of estimated lightpaths, the non-
linear estimation technique exhibits a significant advan-
tage over the linear estimator in terms of ℓ2 norm. In
terms of mean BER, the nonlinear estimator is able to
predict the true mean BER over the network even with
a very small number of monitors (less than 1% error
in mean on log(BER) with 5 monitors), while the lin-
ear estimator requires 25 monitors to achieve the same
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Figure 11: Relative ℓ2 (top panel) and mean er-
ror (bottom panel) for the two estimators, for
log(BER). Also depicted is the lower bound on
the nonlinear estimation described in the text.

performance. As was the case for end-to-end delays,
the nonlinear estimator has a very low bias. When the
number of estimators increase the gap between the non-
linear and linear estimation techniques closes and linear
estimation actually performs slightly better than the
nonlinear estimation. We emphasize that practical sit-
uations are really those where the number of monitors
is small, which is when our nonlinear framework applies
best and performs best.

Moreover, the nonlinear estimation technique applies
to more general situations than the linear estimation
framework. Indeed, for the linear estimation framework
to apply, we need to identify a linear relationship be-
tween link-level (x) and lightpath-level metrics (y). For
the case of lightpath BER estimation, we were able to
define an approximately linear relationship for trans-
formed metrics. This artificial construct is unnecessary
in our nonlinear estimation framework, since correla-
tion between lightpaths is naturally modeled through
the diffusion operator. Finally, we give in Fig. 11 lower
bounds on the performance of the nonlinear estima-
tor. These lower bounds are substantially lower than
what is achieved by our nonlinear estimator, which is
expected given we picked coefficients directly in the dif-
fusion wavelet basis to construct the bound.

7. CONCLUSION
We have presented a framework for monitoring path

metrics based on incomplete end-to-end measurements.
The core of the framework is the development of a basis
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in which the path metric signal is compressible, which
allows us to use powerful nonlinear estimators from the
theory of compressed sensing. Diffusion wavelets pro-
vide an appealing mechanism for developing the basis,
because the specification of a diffusion operator allows
us to create very general models for the correlations be-
tween metrics on different paths. Case studies involving
the estimation of mean end-to-end delays and the moni-
toring of lightpath BERs in all-optical networks indicate
the promise of our framework. Currently we are inves-
tigating the development of alternate bases which can
better capture spatial localization of signal changes. We
are also developing theoretical bounds on the number
of paths that need to be measured to achieve a specified
accuracy.
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