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ABSTRACT

On-line, spatially localized information about internal network
performance can greatly assist dynamic routing algorithms and
traffic transmission protocols. However, it is impractical to mea-
sure network traffic at all points in the network. A promising al-
ternative is to measure only at the edge of the network and infer
internal behavior from these measurements. In this paper we con-
centrate on the estimation and localization of internal delays based
on end-to-end delay measurements from sources to receivers. We
develop an EM algorithm for computing MLEs of the internal
delay distributions in cases where the network dynamics are sta-
tionary over the observation period. For time-varying cases, we
propose a sequential Monte Carlo procedure capable of tracking
non-stationary delay characteristics. Simulations are included to
demonstrate the promise of these techniques.

1. INTRODUCTION

Optimizing communication network routing and service strategies
requires knowledge of the congestion (delay) at different points in
the network. However, it is impractical to directly measure packet
delays at each and every router. Measuring end-to-end (from
source to receivers) delays is relatively easy and inexpensive in
comparison. Consequently, it is natural to consider the following
inverse problem: from end-to-end measurements can we resolve
the delay experienced at each router? This is somewhat analogous
to the medical tomography problem, and hence the name network
tomography [1, 2, 3, 4].

The basic idea is quite straightforward. Consider a net-
work consisting of a single source, sending packets to several
receivers. Standard network routing protocols produce a tree-
structured topology for the network in this case (c.f. Fig. 1), with
the source at the root and the receivers at the leaves. Suppose
two closely time-spaced (back-to-back) packets are sent from the
source to two different receivers. The paths to these receivers tra-
verse a common set of links (connections between routers), but
at some point the two paths diverge (as the tree branches). The
two packets should experience approximately the same delay on
each shared link in their path. This facilitates the resolution of the
delays on individual links (at least in a probabilistic sense, to be
made clear shortly).

We collect measurements of the end-to-end delays from source
to receivers, and we index the packet pair measurements by ������	�
�
�
���

. For the � -th packet pair measurement, let ��	����� and�������� denote the two end-to-end delays measured. The ordering
�
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and � is completely arbitrary. The delays are quantized such that
the (quantized) delay on each link falls in the range � �	���
���
�
���
time units. Associated with each individual link/router in the net-
work is a probability mass function (pmf) for the queuing delay.
Let �����! ����#" $ �	�
�
� �%��" &(' denote probabilities of a delay on link ) .

The goal of the network tomography problem considered in
this paper is to estimate these probabilities, based on the end-to-
end packet pair measurements. If the network is approximately
stationary over the measurement period, then a natural approach
is to use the maximum likelihood estimator, and in Section 2 we
develop an EM algorithm for this purpose. More generally, the
dynamics of the network may be changing over time, and the de-
lay distributions themselves are no longer static. In this case, we
must model the dynamics and track the network behavior. In Sec-
tion 3 we propose a stochastic model of the network dynamics and
develop a sequential Monte Carlo algorithm for tracking the time-
varying delay distributions. Our approaches differ considerably
from a previously proposed method for inferring internal delays
[2] in three key respects: 1. The method in [2] employs a multicast
probing technique, which is not supported by many networks. In
contrast, our methods are based on unicast measurements, which
can be made on any network1. 2. Our sequential methods are
specifically designed for tracking time-varying behavior, whereas
the method in [2] is only appropriate for stationary cases. 3. Both
our approaches are based on a likelihood function analysis, in con-
trast to the sample-average approach employed in [2].

Before moving on, let us comment briefly on the assumption
that back-to-back packets are delayed by roughly the same amount
on each shared link in their path. If the delays are identical on
shared links, then the difference between the two delay measure-
ments can be attributed solely to the delays experienced on un-
shared links in the two paths. This is the key to resolving the de-
lays on a link by link basis. However, in practice the two packets
may experience slightly different delays on shared links due to the
fact that one packet precedes the other in the queues and additional
packets may intervene between the two. In effect, the discrepan-
cies between the delays on shared links adds a zero mean error
to the difference between the two end-to-end measurements. This
“noise” produces a smoothing (or blurring) in the inferred delay
pmfs. Nonetheless, because the errors are zero mean, we can still
use the estimated delay pmfs to obtain reasonable estimates of the
average delay on each link. Thus, our methodology is still very
useful, even when the delays on shared links are not identical.

The paper is organized as follows. In Sections 2 and 3 we
develop an EM algorithm for maximum likelihood estimation in

1As pointed out in [4], it should be possible to extend the method in [2]
to the unicast case.



stationary scenarios and a sequential Monte Carlo procedure for
estimation in both stationary and nonstationary cases. In Section 4,
we evaluate the performance of these methods with simulated net-
work experiments. We make closing remarks in Section 5.

2. EM ALGORITHM FOR STATIONARY NETWORKS

Given the packet pair measurements ���   � ����� � ���������' , we are
interested in maximum likelihood estimates (MLEs) of ���! �� � ' .
The likelihood of each delay measurement is parameterized by a
convolution of the pmfs in the path from the source to receiver.
The coupling of the pmfs of each link results in a likelihood func-
tion that cannot be maximized analytically. The joint likelihood� ����� � � of all measurements is equal to a product of the individual
likelihoods.

The maximization of the joint likelihood function requires nu-
merical optimization, and the EM algorithm is an attractive strat-
egy for this purpose. The first step in developing an EM algorithm
is to propose a suitable complete data quantity that simplifies the
likelihood function. Let 	 � ����� denote the delay on link ) for the
packets in the � -th pair. Let 
 � �  �	 ��������' and 
 �  �
 � ' . The
link delays 
 are not observed, and hence 
 is called the unob-
served data. Define the complete data ��  �� � 
 ' . Note that the
complete data likelihood may be factorized as follows:� ���� � � ��� ����� 
 ��� ��
�� � � �
where � is the conditional pmf of � given 
 (which is a point mass
function since 
 determines � ), and � is the likelihood of 
 . The
factorization shows that

� ���� � ����� ��
�� � � , since � ����� 
 � does not
depend on the parameters � . If we were able to measure the un-
observed data, then the MLEs we seek would be trivially obtained
from the complete data likelihood. Thus, the complete data likeli-
hood is far simpler to work with than the original likelihood.

The complete data likelihood is � ��
�� � � ��� �#" � ������ !��" � �
where" ��" � �$#&%')( �+*-, �/. ')01( � is the number of packets (out of all the

packet pair measurements) that experience a delay of 2 on link ) .
Therefore, we have � ���� � �3��4 �#" � ������ !��" � �

If the " �#" � were available, then the MLE of � �#" � is simply5� ��" � � " �#" �# &6 ( � " ��" 6 � (1)

The EM algorithm is an iterative method for finding the MLE
of � that uses the complete data likelihood function. Specifically,
the EM algorithm alternates between computing the conditional
expectation of complete data log likelihood given the observations� (the E-Step) and maximizing this quantity over � (the M-Step).
Notice that the complete data log likelihood is linear in 7 :8:9<;�� ���� � �3��= ��" � " �#" � 8:9<; ���#" � �
Thus, in the E-Step we need only compute the expecta-
tion of 7 �! " ��" ��' .

E-Step: Let � . 6 0 denote the value of � after the
�
-th iteration. Then>@?BA:CED�F " �#" �G� �IH � >@?BA:CEDKJ %=')( � *MLN, � . ')01( �)O � �IP �

� %='Q( � >�? A:CED�R * LN, �N. ')01( �)O � �� ����� �  � ������S �
� %='Q( � � . 6 0 �T	 � ����� �U2�� �� ����� �  � ����� � �

We see that the conditional expectation of 7 can be com-
puted by determining the conditional probabilities above for
each packet pair measurement. This can be accomplished by
a simple upward-downward probability propagation algorithm [5].

M-Step: Replace " ��" � by5" ��" � � >�?BA:CED�F " ��" � � �VH
in (1) above to obtain the update � . 6:W � 0 .

The overall complexity of the EM algorithm is X � �ZY � � � ,
where

Y
is the average number of links per path,

�
is the number

of measurements, and
�

is the number of possible delay units per
link.

3. SEQUENTIAL MONTE CARLO TRACKING OF
TIME-VARIATION

We now consider the problem of estimating time-varying delay
distributions. We first formulate a model describing the evolution
of the network delay dynamics and then define a delay distribu-
tion in the time-varying context. Finally, we describe a sequential
Monte Carlo procedure for dynamic estimation.

The queuing delay experienced by a measurement packet at
each node in the network is due to other packets in the queue.
We consider a network in which each node has a queue buffer
size

�
with Markovian services at rate [ . The extension to in-

homogeneous networks (differing service rates and queue sizes) is
straightforward. We assume that we make measurements (send
packet-pairs) at a rate of \ �N[ � where \ ��] �

is a constant.
This ensures that there is sufficient time for the queues to relax
between measurements, resulting in approximately statistically in-
dependent measurements. We model all other packet arrivals at a
given queue using a time-varying Poisson arrival process and as-
sume that the bandwidth ^ of this process is limited such that^�_ �

�<\ � [ � �
(2)

This implies a quasi-stationarity; the dynamics of the system are
evolving at a rate slow enough that we can discretize at the mea-
surement rate (specifically where the measurements are made) and
study the discretized system. We complete our model by imposing
a random walk structure on the log-intensity of the traffic arrivals:8:9<;a` ' � 8:9b;a` '�c �ed�f ' � (3)

where � denotes the � -th measurement, and f ' is zero-mean
Gaussian noise of variance g � . The model described thus far in-
duces instantaneous delay pmfs of the form ����" �h�ji � � � wherei � is the ratio of the arrival rate and service rate on the ) -th link.
Such pmfs are exponentially increasing or decreasing, for ik] �



and i _ �
, respectively. This implies that the mode is either at

delay � or delay
�

. In real networks, however, the delay pmfs
can display modes a other points due to the non-Poissonian na-
ture of traffic. A straightforward extension of the model above
can handle these situations. We introduce an additional dynamical
(continuous) parameter � � for each link and define the delay pmf
as ����" � � i � � c�� � �� �

which places the mode of the pmf near � � .
The parameter � � evolves according to a continuous random walk
(with reflection at � and

�
).

We now present our sequential Monte Carlo estimation proce-
dure. For ease of presentation, we describe the special case where� ��� � . The more general case is a straightforward modification.
Our goal is the estimation of a delay distribution at each node in
the network. Under the model we have just outlined, the notion of
a delay distribution is ill-defined. We now define the time-varying
delay distribution of window size � at measurement � as:

���#" � ��� � ��� � �� '=6 (V'�c�� W � * LN, � . 6 01( �)O � (4)

with 	 � � � � being the delay experienced at queue ) by measurement
packets

�
. Due to the slowly evolving queue dynamics, this is a

good approximation (for large � ) to a discrete distribution formed
by considering the queue length at every arrival and service event
between measurements �	�
� d �

and � .
We would like to track the delay distribution over time. The

available observations are a highly non-linear function of the sys-
tem. As a result, the extended Kalman filter is not suitable for the
task, and we use a sequential Monte Carlo algorithm instead. We
wish to calculate the following estimate of � �#" � ��� � ��� :5���#" � ��� � ����� � >� . ������������� � � ��� � ��0 J '=6 (V'�c�� W � * LN, �N. 6 01( �QO P

� �� '=6 (V'�c�� W � � �T	 � � � � � 2��  $ � ' �
� �� '=6 (V'�c�� W � !#"

$ � �T	 � � � � �U2��  � � � � ` 6 � � � ` 6 �  $ � ' �%$ ` 6 � (5)

where  � � �3� F  � � � � � ���� � ��H .
Our sequential Monte Carlo algorithm is based on sequential

importance sampling techniques [6]. The algorithm makes use
of a set of & trajectories or particles, each of which represents
an independent sample path of the network’s dynamical evolution
and thus independently explores part of the sample space. Our
proposed estimator (5), requires an integration over the density� � ` 6 �  $ � ' � , which cannot be analytically solved. Therefore, we
approximate the estimator using Monte Carlo integration. To do
this, we must sample from � � ` 6 �  $ � ' � , which itself is not easily
accomplished. An alternative approach is to perform importance
sampling. The basic idea here is to generate draws from an impor-
tance distribution ' ' , which can be sampled from more easily. We
use these draws to compute the desired Monte Carlo integration as
follows. We can re-write the integration as,!("
$ � �T	 � � � � �U2��  � � � � ` 6 �*) � � ` 6 �  $ � ' �' ' � ` 6 �  $ � ' ��+ ' ' � ` 6 �  $ � ' �%$ ` 6 �

Then, the Monte Carlo estimate is�& %=, ( � � �T	 � � � � � 2��  � � � � ` . , 06 � f . , 0' �
(6)

where f . , 0' � � � ` . , 06 � �$ � ' �.-/' ' � ` . , 06 � �$ � ' � . We form our approx-
imate estimator, denoted 0����" � ��� � ��� , by replacing the true integral
in (5) by its Monte Carlo approximation.

In this paper, we simply use the prior distribution as the im-
portance sampling distribution (i.e., the distribution governing the
random walk (3)). In the sequential framework, we wish to obtain
at time � an estimate of the distribution � � ` $ � ' � � $ � ' � without redo-
ing all the work involved in generating the estimate at time �1� �

.
This is achieved by forming the trajectory

` . , 0$ � ' without modifying

the previous trajectory
` . , 0$ � '�c � , which is possible since importance

sampling distribution has a Markovian structure (first-order ran-
dom walk (3)). At time � , we sample from ' ' � ` ' � ` . , 0$ � '�c � � � $ � ' � ,
and form the time- � particle 2 by appending

` . , 0' to
` . , 0$ � '�c � .

Degeneracy is a major issue in the application of sequential
importance sampling. The variance of the weights increases over
time, so that at some stage many importance weights may be very
close to zero, and the number of particles contributing to the esti-
mator is greatly reduced. This effect increases the variability of the
estimator (compared to the variance one would have with the full& particles contributing). The procedure of resampling consists
of eliminating particles that have small importance weights and
branching the sample paths of particles with substantial weights to
create new particles. This ensures that the number of significant
weights remains close to & .

This culling and birthing process does introduce some addi-
tional computational overhead in the formation of our approximate
estimator. Technically, it necessitates “backtracking” the new sam-
ple paths over the interval � of interest in our estimator, i.e., per-
forming fixed-interval smoothing [6]. This induces a substantial
computational overhead (the complexity of the smoothing algo-
rithm is X ���3&54 � per measurement). In simulations, we observe
that if we use the approximation (replace f . , 0' by f . , 06 )

�& %=, ( � � �T	 � � � � �U2��  � � � � ` .
, 06 � f . , 06 �

for the summation in (6), then we achieve similar performance at
a complexity of X � Y!� � & � per measurement, where

Y
is the

average number of links per path, and
�

is the number of possible
delay units per link.

4. EXPERIMENTS

To assess the performance of our algorithms we simulate (in Mat-
lab) the four-receiver network depicted in Figure 1 below.

Fig. 1. Network topology in simulation experiments.

Experiment 1: We generate 1000 packet-pair measurements from
stationary delay distributions on each link. Figure 2 depicts the



true delay distributions on links � �
���
�
��� along with the MLEs
computed by the EM algorithm. This same experiment is repeated
in 50 independent trials. Figure 3 (a) shows the true average delay
for each link and the average delay computed from the estimated
pmfs. Similar results were obtained with the sequential Monte
Carlo procedure in this case.
Experiment 2: We perform 50 independent trials of the scenario
in Experiment 1, but this time introduce small, random discrepan-
cies between the delays on shared links. Figure 3 (b) depicts the
true average delay for each link and the average delay computed
from the estimated pmfs (note the agreement with Figure 3 (a),
indicative of the robustness of our methods to such errors).
Experiment 3: We generate 3000 packet-pair measurements from
time-varying delay distributions. The temporal dynamics are gov-
erned by (3). Figure 4 depicts the true and estimated pmfs (gener-
ated by our sequential Monte Carlo algorithm) on links 1, 2, and 7
at two different times. Figure 5 plots the true and estimated aver-
age delay on links 2, 4, and 7 as a function of time.
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Fig. 2. True (solid) and estimated (stem) delay pmfs for links 2
and 3 (row 1), 4 and 5 (row 2), and 6 and 7 (row 3) using the EM
algorithm.
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Fig. 3. Estimation of average delays on each link for (a) identical
delays on shared links and (b) small delay discrepancies on shared
links. Boxes indicate the true average delay on each link (1-7).
Error bars denote the one-standard-deviation confidence interval
of the estimated average delay (using the EM algorithm).

5. DISCUSSION

Our experiments demonstrate the potential of both the EM and
sequential Monte Carlo algorithms for network delay tomography.
We find that very good estimates of the delay pmfs can be obtained
from a small number of measurements, and estimates of average
delays are very robust, even in the presence of non-ideal delay dis-
crepancies on shared links. The sequential Monte Carlo algorithm
appears to track slowly varying network behavior reasonably well.
Ongoing work is aimed at theoretical analyses of our methods.
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