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Abstract— This paper develops a new method for hierarchical
clustering. Unlike other existing clustering schemes, oumethod
is based on a generative, tree-structured model that represts
relationships between the objects to be clustered, ratherh@an
directly modeling properties of objects themselves. In céain
problems, this generative model naturally captures the phg-
ical mechanisms responsible for relationships among objés,
for example, in certain evolutionary tree problems in genets
and communication network topology identification. The paper
examines the networking problem in some detail, to illustrée
the new clustering method. More broadly, the generative moell
may not reflect actual physical mechanisms, but it nonethess
provides a means for dealing with errors in the similarity matrix,
simultaneously promoting two desirable features in clusteng:
intra-class similarity and inter-class dissimilarity.

Index Terms— Model-based clustering, tree models, network
topology identification, Markov Chain Monte Carlo methods.

I. INTRODUCTION

framework introduced by this paper, and is examined in tetai
in Section VI. In broader settings, the generative modebis n
reflective of actual physical mechanisms, but it nonetlseles
provides a means for dealing with measurement errors and
simultaneously promotes two desirable features in cluger
intra-class similarity and inter-class dissimilarity.riexample,
in protein classification, it is difficult to discern an untjéng
generative model, but the presented technique provides a
method for addressing errors in similarity measurements.
The new clustering method is based on a maximum likeli-
hood framework. Associated with the set of objestss an
|S] x |S| matrix X of estimated pairwise similarity measures
between objects. We assume that the empirical similarity
matrix X is related to an ideal (or “true”) similarity matrix
~ through a probability density function that describes the
possible errors or distortions K. That is, X ~ p(x|]vy). As
a simple examplep(x|vy) might be a Gaussian density with
mean~ and diagonal covariance?l, in which caseX can

A clustering algorithm is a process designed to organizen@d regarded as a “noisy” version of. In general,X may
set of objects into various classes, such that objects Wittie related toy in a much more complicated manner. The
the same class share certain characteristics. In many cagfilarity matrix v must correspond to a dendritic structure,
it is desirable to perform this task without user supervisiopyt js otherwise unknown and unconstrained. The likelihood
Let S denote a set of objects, called input objects. While fgg 3150 a function of the unknown dendritic trée governing
some clustering problems, the goal is to partition the set gfe structure ofy, and it is our main subject of interest. We
input objects into disjoint classeks-¢lustering), for some other present deterministic and Monte Carlo approaches to estima
problems one desires to obtain a hierarchical structurerevhthe underlying dendritic tre@. We consider also maximum
each class of objects is also partitioned into sub-classds @enalized likelihood approaches that control the compleodi
so on. In this latter case, one can represent the clustefingiie tree estimate, preventing the selection of a tree tisaifét
objects as a tree, also calledlendrogramin which the nodes particular realization of the measurements instead of rine t
represent subsets of the input sefThe leaf nodes correspondynderlying tree structure.
to the individual elements of, and the root corresponds t0  Hjerarchical clustering is a widely used approach, which
the entire set. Each edge in the dendrogram representspag g long history [1]-[5] and is especially popular for
inclusion relationship (see Figure 1 for illustration).i¥paper gocument clustering [6]-[9]. Most approaches to hieraxahi
develops a new method for hierarchical clustering based oRj@stering are agglomerative algorithms that follow a danp
generative dendritic cluster model. The objects are vieagd methodology [10], and proceed by repeatedly applying four
being generated by a tree-structured refinement process. Tjeps: (i) choose the pair of nodes with the highest simjtari
process models the similarities between each pair of abjeqti) merge the pair into a new node/cluster; (iii) update the
rather than the properties of the individual objects. Irtaiar similarities between the new node and the former existing
problems, this generative model naturally captures theipby nodes: and (iv) repeat the procedure until only one node is
mechanisms responsible for relationships among objeats, feft. The crucial step is the update of the similarity valliEse
example, in evolutionary trees and network topology identhature of the update is determined through the specificafion
fication. The latter problem was the main motivation for thgnkage metrics which embody the closeness (or connected-

) - ness) of subsets of nodes. Much of the work in hierarchical
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clustering research revolves around the derivation ofcéffe
linkage metrics from the similarity matriX. The choice of
linkage metric has a very strong influence on the resultant
clustering, so it significantly impacts clustering perfamae.
The suitability of a specific linkage metric depends on the
problem at hand. In our model-based approach this issue is
less arbitrary since the linkage metrics are induced froen th
assigned probability density(x|vy,T). In Section V-A we



and the root node corresponds to a cluster encompassing all
input objects. For example, in Figure 4,= {4,6,7,8,9}.

Every node has at least two descendants, apart from the
leaf nodes, which have none. If all internal nodes have gxact
two descendants then the tree is called binary. For each node
1 € V let f(i) denote the parent of, e.g, f(8) = 5. We
can identify each link with the corresponding end noide,

@ (b) (f(i),i) ~ 1, (f(@),4) € L. Leta(i,j), i,j € V, denote the
nearest ancestor of the pair of nodesj), e.g, a(4,9) = 2.

We define alsa:(i), i € V, as the set of children nodes of
e.g, ¢(2) = {4,5}. For a given nodé& we denote byS (k) the
subset of leaves with k& as an ancestor. This set corresponds

present an algorithm following the agglomerative frameworto the elements in the cluster represented by nkde.g,
where the linkage metric arises from the probability modef(2) = {4.8,9}.
For the simple case of the Gaussian model mentioned abov&0r each pair of input objects we can consider a similarity
(with a diagonal covariance matrix1) this leads essentially metric value. This value reflects how similar (with respect
to the well known Unweighted Pair-Group Average Methot certain characteristics) the two objects are (the lather
(UPGMA) [10]. value, the more similar they are). Let; denote the similarity
Other model-based approaches have been used for hiePgtween two input objects j € S. The goal of clustering is to
chical clustering in the past [11]-[14]. Such methods ugualdroup inputs together that have the large pairwise sintigari
model the clusters directly, as Gaussian components, fid to simultaneously separate inputs with lesser sirtidari
example. The cluster models induce a distance measure. Y refer to each such group as a cluster.
work of Banfield and Raftery [5] is representative of this Two key notions in clustering are the inter-cluster andaintr
strategy. In contrast, our approach is based on a generaﬁ{}é?ter similarities. We define the inter-cluster simiias of
model of the similarity matrixX rather than a model of the two disjoint clusters as the similarities of pairs of obgect
objects in the clusters. Therefore, the objects to be aledtdo Where one element in the pair belongs to one cluster and
not need to be directly embedded in a metric space. This sllof¢ other element belongs to the other cluster. For a single
us to express possible errors or uncertainties in our siityila cluster, we define the intra-cluster similarities as thevpae
measures in a simple manner. We are not aware of previgiilarities of objects within the cluster. A good clustegi
work that has adopted this approach. Moreover, in certdfone in which the inter-cluster similarities between aiisj
problems such a formulation is physically motivated andenoflusters are small, compared to the intra-cluster sintidayi
natural than devising models for the individual classess & ©f each individual cluster. Ideally, the inter-cluster Barities
particularly true if there is an underlying hierarchicalisture. between two disjoint clusters are identicak., two clusters
This paper is organized as follows: Sections Il and III inshare the same similarity value between each other, for ex-
troduce the problem and the likelihood framework. Sectién 12mple, in the clustering depicted in Figureyl¢ and~,7 are
provides some important characterizations and key pr-[mertassumed to be identical (this corresponds to the inteterlus
of our framework. In Section V two algorithms seeking théimilarities of clusters{4} and {6, 7}). However, in practice,
solution of our problem are introduced; one more deterriinisthis notion of identical similarity between clusters is not
and greedy in nature, and the other based on a random se&@perally met by the empirical similarities:;; } for several
technique. In Section VI we present a practical and releapnt reasons. First and foremost, the hierarchical clustecttra
plication of the concept and algorithms introduced presipu IS typically an approximation of the physical relationship
The section includes some simulation and experimentaltsesuPetween objects, and the actual relationships may notlgtric
Finally, in Section VII, we make some concluding remark§dhere to the hierarchical structure. Secondly, the medsur

The proofs of various results in the paper are presentedSinilarities may be contaminated with errors or may be liase
Section VIII. due to limitations of the measurement system. For example,

in Figure 1, the measured similaritiagg and x47; (defined
formally in the next section) may not be equal to one another.
In our model, enforcing identical inter-cluster simila
A hierarchical clustering of a set of objects can be desdribéetween disjoint clusters is accomplished as follows. @mms
as a tree, in which the leaves are precisely the objects to dre arbitrary treel” = (V, L). With each node in the tree we
clustered. An example is depicted in Figure 1 and it is usedsociate a metric valug, € R, k € V. This metric value
to clarify the concepts introduced below. In our formulatioprovides a measure of the similarity of the element$'{i).
we focus primarily on the tree representation. For each pair of objects,j € S we require the pairwise
Let T = (V,L) denote a rooted tree with nod&s and metric valuey;; to be the metric value of the nearest ancestor,
directed linksL (we consider a strongly acyclic graph, that isthat is~;; = v,(; ;). Note that this enforces symmetry of the
if we disregard the direction of the edges the graph is a.treppirwise metrics values.¢., v;; = ~v;;). The valuewy;; can
Denote the root node bRoot . Denote byS the leaf nodes. be regarded as a characterization of the shared portioreof th
Each leaf node corresponds to one object in the inputSset paths from the root té andj. The shared path for a pair of

Fig. 1. Dual representation of an hierarchical clusterif@j:Example of an
hierarchical clustering, (b) corresponding tree repregiem.

Il. PROBLEM STATEMENT



nodes(i, j) is the path from the root to node(i, j). Notice [1l. LIKELIHOOD FORMULATION
that the tree structure imposes restrictionsygn for example,

if two different pairs of nodes have the same shared patms thg
their similarity values must be the sangeg, consider the tree

Recall thatX denotes the empirical similarity matrix. These

e the accessible measurements, which convey information

e - about~ andT. We consider the empirical similarities to be

in Figure 1; The pairs of node$, 8) and (4, 7) have the same jnerfect, possibly contaminated with errors, or only @ud

shared paths, thugss = a7 _ reflections of the true similarities between objects. Weardg
Define the matrixy = (v;; : i,j € S). According to the x 55 a random process parameterizedybgnd 7.

discussion above, in order forto be compatible with the tree g, 4 given unknown tre@ let X = {X;; :i,j € S, i #

structure it must belong to the set 4}, where eachX;; is a random variable parameterized by
D(T) = {~: vij =y if ali,j) = a(k,1)} . L Y= {%-j} e g(7). Letp(_x|~y) denote the probability (.Jle'nsity
function of X, parameterized by. A samplex = {z;; :4,j €
Clearly matrices in this set are not only symmetric, but haves, i # j} of X is observed. Notice that, in general; # z;;.
more constrained structure. We disregard node self-gitigig  \When p(x|+) is viewed as a function of’ and~ € G(T)) it
~ii,» because these do not provide relevant information for tiwcalled the likelihood ofl" and~. The maximum likelihood
clustering task. tree estimate is given by
To ensure identifiability of the tre& (that is, to ensure we
can fully recover the tree given the set of pairwise metrics)
we require the metricy to satisfy themonotonicity property _ _
which requires thaty;;, < ~x for any internal nodek in where denotes théorestof all possible trees with leaves
the tree £ € V \ {S,Root }). This property has a very If the maximizer of the above expression is not unique define
Simp|e graphica| interpretation: deeper nodes (the leaves T* as one of the pOSSible maximizers. In many situations we
the deepest nodes) have greater similarity values. FromAr& not primarily interested ify(x), an estimate ofy from the
clustering perspective this enforces that the inter-elusim- Mmeasurements, hence we can regaes a nuisance parameter.
ilarities between two disjoint clusters are small, comgaie N that case (3) can be interpreted as a maximization of the
the intra-cluster similarities of each one of the two clustgVe profile likelihood [16]

T* =argmax sup p(X|]v), ®)
TeF "}’Gg(T)

will see shortly that knowledge of the metric values for each _
pair of elements it and the enforcement of the monotonicity (XIT) WZLQII()T)p( ) “)
property are sufficient for identification of the underlyitige

The solution of (3) is referred to as the Maximum Likelihood
Tree (MLT). Searching for this tree is our attempt to find
the tree associated with the unknown pairwise metrcs
The remainder of the paper presents various techniques and
characterizations of the likelihood structure that leadhubat
G(T)={veT(T) :v4x) < W, Yk €V \{Root,S}}.  direction.
2 In our model, we also assume that the probability density
Given the pairwise similaritiey characterizing the input set,has a diagonal structure. Specifically, the random vargable
it is possible to reconstruct the dendritic tree. For examplX;; are independent and have densitig€s;;|vi;), ¢,7 € S,
referring to Figure 1, the metrigsy will be greater than,o for ¢ # j. This assumption is somewhat restrictive (e.g., the
alli € S\ {8, 9}, revealing that nodes and9 have a common observed similarities cannot have correlated errors), vizit
parent in the tree. Using a simple agglomerative bottorfeel it is not unreasonable in many applications, such as the
up procedure, following the same conceptual framework astworking problem we consider later. Moreover, without a
many hierarchical clustering methods [1], [4], one can veco diagonal structure it may not be possible to base the ciagter
the underlying tree. The following result, appearing in grocess on local algorithms, like the common agglomerative
networking context in [15], ensures that for a similaritytha bottom-up procedure mentioned in the previous section.
~ satisfying the monotonicity property, the set of pairwise To simplify our presentation, denote the log-likelihood
similarities completely determines the tree. by hij(zij]vi;) = logp(mijlvi;). We will also assume that
Proposition 1: Let T be a tree topology with object sét  hi;(z;;|vi;) is a strictly concave functional of;; having a
Let {v;;} be the set of pairwise similarities, corresponding to @aximizer inR (note that the maximizer is unique since the
monotonic metric or¥". ThenT is the only tree with pairwise function is strictly concave). The log-likelihood is hence
similarities{~;; } satisfying the monotonicity property. That is
) g g ooty property ogp =3 Y k). ©
The proof of the result follows by constructing the ag- €5 jeS\{i}
glomerative bottom-up algorithm suggested above, and eanThe assumption of concavity is strong, but not uncommon
found in [15]. in most familiar probability models. Furthermore, notettha
The goal of our work is to determine an optimal hierarchicallthough parameterized by a common parameigrthe log-
clustering tree with respect to the probabilityx|v). Our densitiesh;; andhj; are not necessarily the same (as in the
optimality criterion will be specified in the next sectiorfte example in Section VI), so the two measuremenjsandzx ;
introducing some basic notation, terminology and conceptsare different in nature, and convey different information.

topology.

For a given treeT’, the set of all metrics satisfying the
monotonicity property, denoted thmonotonic metric subset
is defined as



IV. CHARACTERIZATION OF THE MAXIMUM LIKELIHOOD Remark 1: Consider an arbitrary tre@. Suppose that

STRUCTURE the maximum oflog p(x|v) is attained fory € T'(T) \ G(T'),

The optimization problem in (3) is quite formidable. Wehat is, expression (8) holds. The theorem implies that @t th
are not aware of any method for computation of the globa#ise there exists another trg®, ), v € G(T'), with a higher
maximum except by a brute force examination of each tréikelihood. Consequently the tréE cannot be the maximum
in the forest. Consider a tree witli leaves. A very loose likelihood tree (10).
lower bound on the size of the foregtis N!/2. For example, Remark 2: The second part of the theorem (10) shows
if N = 10 then there are more than8 x 10% trees in the that it is unnecessary to perform the constrained optinazat
forest. This explosion of the search space precludes thte braver G(T'). For each tree, we can compute the much simpler
force approach in all but very small forests. Moreover, theptimization (overI'(T")), using Lemma 1, and check if the
computation of the profile likelihood (4) is non-trivial kmese resulting maximizer lies in the s€(T).
it involves a constrained optimization ové(T). Define the set of trees

Using the model (5) we have thatx|~) is a continuous and
bounded function ofy and hence we can rewrite the profile F = {T € F:arg max p(X|y) € m} .
likelihood as yel'(1)
LX|T)= max p(x|v),

Yed(T)

(6)

Note that the maximum likelihood tree belongs to this set,

_ T* € F'. We call 7’ the feasible forestDespite this charac-
whereG(T) denotes the closure of the s@t7"). The profile terization, a search oveF’ might still be too demanding.
likelihood can be computed by solving this constrained-opti  Remark 3: Note that we can restrict our attention to
mization problem, although the solution is still fairly mived. pjnary trees, because the maximum of the likelihood fumctio
The following results establish some key properties fos thign always be achieved by a binary tree. To see this, simply
problem. The next lemma characterizes a modified version gitice that for any non-binary branching point (e.g., a node
the profile likelihood (6) (the version of the profile liketibd ith three or more branches) there exists a sequence ofybinar
in the lemma does not involve the monotonicity ConStrai%ranchings with the same (or larger) likelihood, since tkteae

that is, the optimization is ovel'(T") instead ofG(T'), the pranches provide extra degrees of freedom in fitting to the

monotonic metric subset).
Lemma 1:Let T be an arbitrary tree. The solution of

A = arg max p(x|y)
yel'(1)
is unique and given by

>

k,l€S:a(k,l)=a(i,5)

7ij = argmax b (wre]y) - (")

The proof of the lemma is elementary and it is presented
Section VIII-A. The evaluation of this version of the profile
likelihood for a given tree is very simple, following from
equation (7). This is a one-dimensional concave maxinupati
problem that can be solved efficiently using simple numéri
methods. For certain classes of models (like the one

Section VI) it can also be solved analytically.

The unconstrained optimization in the lemma above is e
to solve, and the following theorem (proved in Section \B)-

empirical similarities. Of course, it may be desirable taoaiin
a clustering with as few branches as possible, and this issue
will be examined in the next section.

V. HIERARCHICAL CLUSTERING ALGORITHMS

In this section we present two algorithms intended to solve
the problem (3). Hierarchical clustering algorithms geitigr
belong to one of two types: bottom-up, agglomerative con-
n o
structions or top-down, divisive methods. Our probaldist
model for the similarity matrix allows us to develop a novel
agglomerative algorithm based on the likelihood functieur-

thermore, by viewing the (profile) likelihood function asia-d

ca

Crete probability mass function, we also devise a Metrapoli
I—Pastings search strategy that circumvents the greedytsearc
strategy associated with agglomerative and divisive #lgoss.

asy

shows that it is sufficient for the purposes of determining thA. Bottom-up Agglomerative Approach

MLT.
Theorem 1:Consider a fixed realizatiorx of X. Let
log p(x|7) be given by (5) and” be a tree such that

> max_p(x]y'). (8)
V' E€G(T)
Then there exists another tré&,~), v € G(T'), satisfying

the monotonicity property, such that

max_ p(x|y')
vy el'(D)

p(Xly) > max p(x|v'). 9)
Y'e9(T)
In particular, if T is the solution to (3)j.e, the MLT, we

have

arg max__ p(X|vy') . (10)

Y'eg(T+)

arg max p(x|y') =
v el ()

At the end of Section Il we noticed that the pairwise
similarity values can be used to recover the underlying tree
structure through a bottom-up merging procedure. In most
practical scenarios, we only have access to the measurement
X, conveying information about (and hence abouf). In this
case we can still develop a bottom-up agglomerative clingter
algorithm to estimate the true dendrogram.

As pointed out inRemark 3we can restrict our attention to
binary trees, and this restriction leads to a particulairtypte
algorithm for clustering. The algorithm proceeds by forgnin
estimates of the pairwise similarities for each pair of leaf
nodes:

~

Yij = argglgﬁi(hij(xijh) + hji(xjily)), i, €S, i #j .



1)
2)

3)

4)

5)
6)

Input: Set of input nodesS, likelihood functions{ f; }.
Initialization: S’ := S,V := S5, S(r) = {r},Vr € S,
and®; = arg maxyer (fi; (@i |y) + fii(jil7)).

Find the a pair of nodes j € S’ such that

Nij > A, Ve, 1 €S .

Denote byk the new node, the inferred parent of th
nodesi, j. SetV := VU {k}, S' := S U {k}\ {i,5}
andS(k) = S(i) U S(j). Set alsof (i) := k; f(j) := k.
Define

Akt = ik = arg Té% ;(k) Jr(@ely) + fir (i ]Y)
re 2

wherel € "\ {k}.

If S’| > 1 go back to 3. Otherwise set Roatk.

Output: The node sefi” and the parent functiorf :
V \ {Root} — V, defining a unique tree. Also the set g
similarity estimatesy, if desired.

Fig. 2. Agglomerative Likelihood Tree (ALT) algorithm.

One expects the above estimated pairwise similarities to
reasonably close to the true similarities with the differ-

ences being due to measurement noise and limitations of mﬁltiple (roughly independent) measurements.
measurement procedure.

Leti andj be the indices of the leaf nodes with the highe% € R* can represent a signal-to-noise ratio, governing the
similarity, that is

%‘ > Ym, VI,me S .

Y13 = 723. The estimates of the metric values are almost surely
not going to be identical (since the density is continuous).
Therefore, in this case we notice that the maximum likelthoo
tree must have one internal node (this should be clear from
the proof of Theorem 1, as the estimated binary tree cannot
match the underlying, non-binary tree. In conclusion, when
the underlying tree is non-binary, the MLT will have extra
links (not in the underlying tree), used to fit the data more
accurately.

B. Asymptotic Performance of ALT

As pointed out before, one expects the estimated pairwise
similarity values” to be close to the true similaritieg. In
this section, we characterize the limiting behavior of ALF a
the estimated similarities tend to the true similaritiegfibe

/’%j (X) = argmax h;; (xij |’}/) + hji(l'jih) ,
yER

wherei,j € S. Given the measurements 7;;(x) is the
maximum likelihood estimate of the pairwise similaritieg
without further knowledge of the tree topology). In vargou
narios we can increase the accuracy;pfx) by consid-
ering more elaborate similarity measurements, or consiger

Let p “index” the accuracy of the estimates. For example,
measurements, @re N can denote the number of independent

measurements made for each input pair and averaged to com-
pute the estimate. Suppose that(x) converges in probability

We infer thati andj are the most similar leaf nodes, implyingq ~i; asp tends to infinity.

that they have a common parent in the dendrogram. Denoteproposition 2: For a binary treel’ the ALT algorithm is

their parent node by. In other words, we are constructing theonsistent, that is, ifl’ is the tree obtained by the ALT
clusterS(k) = {4, j}, and node in the dendrogram representsgigorithm then

that cluster. Assuming that our decision is correct then the

tree structure imposes the conditiexi,!) = a(j,1) for all
1 ¢ {i,j}. Hence we update our pairwise similarity estimateslso, asp grows, the probability that this is the only binary
for pairs involving: andyj, using Lemma 1. Furthermore, sinceree in feasible foresF’ converges to 1.

~i =7, foranyl ¢ {i,j}, we can just add node as a new
leaf node, and removéand j from the leaf set. Define the the ALT algorithm perfectly reconstructs the original hipa
new leaf setS” = S J{k}\ {i,j}. We need to define pairwisetree, provided that one can estimate the similarity valuigis w
similarity estimates for pairs involving the new noke

Vki = Yk = arg max Z hei(zrt|y) + R (i |Y)

reS(k)

lim Pr(T=T)=1.

p—00

The proposition (proved in Section VIII-C) indicates that

enough accuracy. The second part of the result charadierize
the feasible foresF’, and has the following important impli-
cation.

Proposition 3: For binary trees, the MLT is a consistent

wherel € S"\{k}. This procedure is iterated until there is onlyestimator of the true dendritic tree. That isif denotes the
one element left irt’. The algorithm, denoted AgglomerativeMLT then lim,, .o Pr(T = T%) = 1.
Likelihood Tree (ALT), is detailed in Figure 2.
Notice that the number of elements$fis decreased by onethe maximum likelihood tree is binary and belongs #0,
at each step of the algorithm, guaranteeing that the algorit therefore, ag increases, the probability that the MLT is the
stops. The algorithm structure ensures similarity es&at only binary tree inF’ converges to one, by Proposition M
satisfy the monotonicity property, with respect to the fimaé
(this follows from the algorithm structure and Lemma 2 ionsistent, but nevertheless the inferred tree is “cornleiti
the Appendix). Notice also that the algorithm always yiedds with the true underlying tree, in the sense that it has extra,
binary tree.
Before moving on, let us comment briefly on the binarfhe incremental differencesy. — 95(), in such cases will
tree restriction. Suppose that the underlying tree were ndre typically small, and these extra links can be eliminated
binary, consisting of only the root node and three leaf noddsy using a simple thresholding procedure, collapsing thiesli
Let the leaf nodes be denoted by 1, 2 and 3. Then =

Proof: The proof of this result is elementary, since

For non-binary trees, neither the MLT nor the ALT are

superfluous links, that are used to fit the data more closely.

with incremental difference smaller than a certain thrégho



. : : : [
Of course, selecting a reasonable threshold is a trickyeissu ns‘e)n

Another possibility is to consider cliques of more than two —

nodes at each agglomeration step, which allows for nonrpina ABirth Move bt
trees. Such cliques are selected if all nodes in a clique have ./.\.
similarities within a small range, indicating that they aearly L L ]

equally similar to one another. This possibility requirése t

specification a tolerance or threshold to define the notioa of Delete )

“small range”. However, it is not clear which cliques shob&l —

agglomerated first. With either approach, deleting seelying ﬂ Death Move

superfluous links or merging larger groups, the extension of ° ®

ALT beyond binary models thus requires the specification of

eX_trE_l tuning parameters, and therefore we do not '”Veet'g%. 3. The birth-step and death-step moves illustrate@: Gitth-step selects

this issue further. Instead, we advocate a Monte Carlo ndeth®node with more than two children, chooses two of these reilcand inserts

that is capable of handling non-binary trees, and circurtsven extra node as the new parent of these children. The dexifselects and
deletes a internal node.

the greedy nature of ALT.

C. Markov Chain Monte Carlo Method fit this approach in a Bayesian framework, where we now

Although the ALT algorithm is a consistent estimator o?on5|der a prior such that any tree in the feasible sefs

the true dendrogram (when it is a binary tree), it is a gree&)gua”y likely, and trees outside this set have probabiéiso.

strategy, based on local decisions over the pairwise met(gc-rhere are numerous ways of drawing samples from a

values. Unlike the ALT, the MLT estimator takes a glob Istribution th_at is known up to a normalizing fact.or [17].
approach, seeking for the best (inamaximumIikelihood&s)snl}|ere we outllng an MCMC approach. Thg algorl?hm we
éesent is relatively simple and serves mainly to illugtrat

tree. The price to pay is that we now must search over . g
entire forestF. We can simplify this search using Theorem 1 € basic methodology. There are many strategies that can be

and make the search only over the $&t but this is still a very applied to improve the performance, such as smart restagits a

computationally demanding task. In this section we propog1 nealing [18]. We do not pursue such enhancements in this

a random search technique to efficiently search the forestGPen but bglleve that it is a fertile avenue _for f_uture work
trees. One possible way to perform the sampling is to use the

Consider the profile likelihood (x|T'), as defined in (6). Metropolls-Hastlng_s algorithm [19]’. [20.]' For this we neted

The maximum likelihood tree was defined as cons.truct.a irreducible Markov cha!n VYIt.h state spécénote
that in this case the state space is finite), so that each state
T* =argmax L(X|T) . (11) corresponds to a tree. We allow only certain transitions (or
rer equivalently, allocate certain transitions probabilily Bor a

For a fixed measuremextwe can regard the profile likelihoodgiven state (a treey; € F we can move to another state
L(x|T) as a discrete distribution ovef (up to a normalizing (tree) using two possible moves: (i) a “death” move, in which
factor). Then, one way of searching the setis to sample we collapse an internal edge (not a leaf edge), identifyleg t
it according to this distribution. More likely trees are the endpoints of the collapsed edge; and (i) a “birth” move, in
sampled more often than the less likely trees, making thghich we first choose a pair of children of a nadevith three
search more efficient. This approach can be viewed inoa more children, then introduce a new nodeand make it
Bayesian framework, with the adoption of a prior on the foreghe parent node of the chosen pair and a chilé.ofhe nature
of trees that renders each tree equally likelpriori. of the moves is illustrated on Figure 3.

Evaluation of the profile likelihood (6) is complicated, as We build our Markov chain using a step-by-step approach.
pointed out before, since it involves a constrained op@tin  For a given states; € F there areng, allowed transitions
over the monotonic metric sef(7"). As we observed in (both deaths and births). This number can be easily computed
Section IV the MLT belongs to the set of feasible treé€s At any states;, we choose among the possible transitions
For trees inF’ one can compute the profile likelihood veryuniformly, that is, we choose a particular transition with
easily using Lemma 1. Also, given an arbitrary tree, one cgmobability 1/n,,. The transition matrix for this chain is
easily verify if that tree belongs t&’ by performing the less- ,
constrained optimization (oveF (7)), using Lemma 1, and 97.7" = Pr(siy1 =T"si = T)

then checking if the resulting maximizer lies in the 6€1"). _ { ~ T is within one move froni’
The main idea is then to perform the search a%érinstead 0 , otherwise
of 7. Define Let {s; : i € N} be the chain satisfying the condition above.
LX) = LXT) ifT eF _ (12) Proposition 4: The chain{s;} is irreducible, that is
0 otherwise

VI,T' € F IneN:¢i", >0,

The above expression can be evaluated much faster than '

(6). We can regard (12) as a distribution ov&r (up to a where q(Tf)T, is the probability of reaching staté’ starting
normalizing function) and proceed as before. Again, we cdirom stateT’ usingn moves.



The proof of the proposition is presented in Section VIlI-Ddistribution is multimodal, we can get “stuck” on one of
Using a generalization of the Metropolis algorithm [19] duthe modes of the distribution, although eventuallg.( with
to Hastings [20], we construct another Markov Chain in ord@ositive probability) we will jump out. This further illusites
to obtain a chain whose unique limit distribution (and alsthat the initial state of the chain is of utmost importancein
unique stationary distribution) is precisel§/ (x|T"). Thus if practice. At the end of the following section we propose a way
we sample from this chain for a sufficiently large period off directing the search, to prevent some of these problems.
time, the observed states will be samples of the distributio
L'(x|T), regardless of the initial state. D. Maximum Penalized Likelihood Estimation
The new chain can be constructed in a two-stage fashion

Define the probability of acceptanee: - One drawback of the maximum likelihood approaches to

our problem is that, in general, trees with more links have

ar = higher likelihood values (since the extra degrees of freedo

L XIT) a4 e they possess allow them to fit the data more closely). If the tr

{ mm{ 7 (XIT) a7/ ’1} i L (X|T) qrr >0 e s not binary then it is going to yield a lower likelihood
1 , otherwise value than a certain binary tree. This is an example of the

“

For a given statd’ € F' we randomly choose the possibleoverﬁtting” problem in model selection. The extra linksthre
next state according tgr 7, and accept that transition with MLT are there only to fit the particular set of measurements

probabilityar 7. Hence the transition matrix of the new chaif"ore accurately, and do not reflect the underlying model we
is {rr.r} with wish to identify. The usual strategy for tackling this issug

to weight the complexity of the models involved, penalizing
. ,:{ T, qr,T! it #T (13) models that are more complex [22], [23]. The basic idea
T V=2 quyrarorgror it T"=T behind penalized estimators is to find the “besthplemodel.
iln this approach, instead of maximizing the profile likeli-

We need to ensure now that the above chain has a unique li ) T .
ood we will maximize the functional

distribution, proportional taC’(x|T"). Clearly, if we start in a
state inF’ the next state is going to be i’ (with probability LA(X|T) = L(X|T) exp(—=An(T)) , (14)
one). One needs to be sure that the chain with transitiorixmatr

{r:;} is irreducible and aperiodic, and thus has a unique limtneren(7) is the number of internal links in the treé& and
distribution (12) [21]. The following proposition, proved A > 0 is parameter that controls the trade-off between the fit

Section VIII-E, ensures these properties. of the data and the tree complexity (number of links). Our
Proposition 5: The chain with state spacE’ and transition €Stimate is then
matrix {rr 1} is irreducible and aperiodic. T =arg max log £ (X|T) . (15)
€

To get our (approximate) solution of (11) we simulate the
above chain and consider the MAP estimator, that is, the staVe denoteTy by the Maximum Penalized Likelihood Tree
with largest valueL(x|T') visited. The longer the chain is (MPLT). Notice that if A\ = 0 this is precisely the MLT
simulated, the higher is the chance of visiting the MLT agstimate. The higher the value of, the more effect the
least one time. Theoretically, the initial state of the chaipenalization has, relative to the likelihood (data-fittilegm).
is not important, provided that the chain is simulated for lbarge values of\ lead to trees with fewer links. Note that
sufficient period. In practical applications, on the othanti, the complexity penalization criterion above takes a global
it is of crucial importance, since the state space is veryelar approach, and it is not based on local decisions, unlike the
and reaching the region where the MLT lies may take a largeuning techniqgues mentioned in the end of Section V-B in
number of transitions. Starting the chain simulation frdra t the context of ALT algorithm.
tree obtained using the ALT algorithm is a reasonable choice The following result, similar in spirit to Theorem 1, proeisl
since this is a consistent estimator in the binary case, aagbartial characterization of the solution of (15) and alless
one expects the ALT to be “close” (in terms of the numbehe search for the optimal tree.
of moves) to the actual MLT tree. If that is the case, the Proposition 6: The MPLT 75 is in the feasible tree set’.
MCMC starts by searching trees that are near the ALT tree,This result (proved in Section VIII-F) indicates that we
and therefore close to the MLT. This is particularly releMan can use our MCMC approach as before, but now instead of
clusterings involving a large number of input objects, giety L'(x|T") we usel) (X|T') = L'(X|T") exp(—An(T')). The chain
a very large state-spac¥, difficult to explore completely in obtained in this fashion is still irreducible and aperiodiud
reasonable time. Starting the chain from the ALT ensurefs thence has a unique limit distribution.
the search will focus on a promising region of the forest.@dth The choice of the complexity penalty parameteris a
techniques can be used to enhance the performance of thiscial step in the above approach. There is a vast litexatur
method, for example restarting the chain at various differeaddressing this issue; a classic technique is the Minimum
trees [18]. Description Length principle [22]. In this paper the choice

Itis important to point out that, although the states visity  of A follows from the analysis of a simple, but relevant model
a simulation of the chain constructed above may be regardede Section VI). Suppose that is normally distributed with
as samples from the (non-normalized) discrete distributioneany;; and variance? (that isz;; ~ N(7i;,?)). Consider
L'(x|T), these samples are not independent, and so, if thew a tree with three leaf nodes (which we refer to as the true



tree). We have essentially two possibilities: (i) eithdrthe the branching points between paths to different receiviéis
three leaves have a common parent; (ii) the tree is binary. daorresponds to a tree-structured topology with the sertdbea
both cases we can ask when does the penalized approach feilst and the receivers at the leaves, as depicted in Figure 1.
producing a tree with a different number of nodes than the triThe tree topology is effectively a hierarchical clusterafdhe
tree. The two failure probabilities can be easily compufed; receivers, where each cluster corresponds to the maxirhal se
case (i) the failure probability is a decreasing functiongfor  of receivers that share a common device in the network.
case (i) it is an increasing function of Ideally we want the ~ We define a similarity metricy;;, associated with each
two probabilities to be small. Balancing these two quagsgiti pair of receiversi,j € R. The value of~,; is related to
provides a tradeoff that can be used to choose the apprepritie extent of the shared portion of routes from the sender to
value of A. Despite the simplicity of the model, it providesreceivers andj (i.e., the shared path for paft, j), as defined
useful guidelines for the choice of penalty parameter fayda before). We cannot measure the pairwise metrics directly,
numbers of objects, under the Gaussian model. so we estimate them, performing measurements across the
As a closing remark on this Section, notice that a simpleetwork. In most cases, the measurement is based on active
procedure, inspired by Simulated Annealing technique$, [24robing, involving the transmission of probe packets from
can be used in the context of the MCMC method developetie source to the receivers. In earlier work, we proposed
The idea is to start simulating the Markov chain with a large metric based on delay difference measurements [27]. The
penalty parameteA and reduce it gradually (according todelay difference measurements provide (noisy) versiona of
some “cooling schedule”). This technique is different thametric related to the number of shared queues in the paths to
the traditional simulated annealing procedure, but fofldhe two receivers. More precisely, if the constituent links bét
main conceptual ideas. This approach forces the searchskared path have bandwidtl,,, the pairwise metric value
focus first on simpler trees (those with less links) and thes approximately proportional t§_1/B,,, the sum of the
gradually extend the search to explore increasingly coxpliéverse bandwidths of the constituent links. Thus each link
trees. This reduces the possibility of the search beindstuc in the shared path contributes an additional positive nreasu
a undesirable region (a local maximum). There are sevethaht is inversely proportional to its bandwidth, and theref
parameters that need to be tuned, and we do not addrggs monotonicity property follows naturally.
this issue here. Discussions on general simulated angealinThe measurementéz;;} are the empirical means of re-
techniques can be found in [24]. peated delay difference measurements. Under reasonable as
sumptions, the measurements are statistically indepénden
and, according to the Central Limit Theorem, the distribuiti
In this Section we present a practical example that illissra of each empirical mean tends to a Gaussian. This motivates
the use of the above framework. We discuss some simulatige following (approximate) model:
results, as well as practical experimental results. Cansid
communication network, in which a sender node transmits Lig ~ N(%‘jaafj)a (16)
information packets to a set of receiver nodes, denoted b 9 | . f th
S. The receivers are, in this case, the usual “objects” to be ergai-?' r:s samp elvarlanceg .tdeéjbmeasurecrjnj\(;nts aQSSO'
clustered. Assume that the routes from the sender to the ﬁéa—te with empirical meam;;, divided byni;, and (7’02)
ceivers are fixed. The physical network topology is esskytia enotes the Gaussian def‘s"y with ’.“eﬁ“”d varance.
. The measurements for different pairs of receivers are also
a graph, where each node corresponds to a physical de\flcéaependent
(e.g, router, switch, terminal, etc.) and the links correspon ' - L
to the connections between these. Althoggh mo_dgl (16) is just an apprOX|mat|o.n of the_ true
nderlying statistics of:;; it allows us to cope with practical

The problem we address is the identification of the ner- deling difficulties i lativel Note that
work topology based on end-to-end measurements, which jg1gdeling dimcuities in a relatively easy way. Note that we a

practical problem relevant in the networking community]25 inthe scenario described in Section lll:
[28]. Knowledge of the network topology is essential folkkas i (i3 035 ys5) = — (zij — 7ij)? O, a7

like monitoring and provisioning a network. There are tools i\ Tig» Oij\ig) = 201.27. o

such ast r acer out e, that rely on close cooperation from . o '

the network internal devices, such as routers. These toels ¥hereCi; is a normalizing constant. We can then apply the
effective only when the devices are responsive and workiggorithms developed before to estimate the network tagolo
properly. These conditions are becoming less common fdrthermore the model (17) has some desirable properties,
the network grows, and with the increasing concerns wiff@mely, it is closed under summation:

malicious activities (denial-of-service attacks, wornesc.).
Therefore it is important to be able to infer informationrfro

VI. NETWORK TOPOLOGYIDENTIFICATION

hij(xij, 05 17) + b (@, o |7) =

the network without cooperation from the internal devices. ((I_; + w_gz) / (Lz + Lz) _ 7)2

In the following, we consider only end-to-end measurements T S +C.

preventing us from utilizing internal network device infioa- 2 (012 + (%2)

tion. This forces us to rely solely on the traffic and queueing K M

characteristics. With this limited information, it is onfyos- This makes the computations arising from Lemma 1 very

sible to identify the so-called “logical topology”, defindy simple.



We performed some simple simulation experiments a€his corresponds to a practical networking scenario: sihee
cording to the model above, to assess the performancedefay differences are measured at each receiver, we mimic th
the algorithms developed. In these simulations we randondgse where measurements taken at receiver 1 (identified
generate tree topologies (clusterings), that we call the trwith leaf 1) are less reliable than the measurements cetlect
generative trees (clusterings). We compare the true and elsewhere. For each value efwe evaluate the three methods
timated clusterings using two criterions: (i) the percgpetaf on 1000 randomly generated trees.
clusters of the true clustering that were correctly idesdifi In Figure 4(a) we plot the performance of the three methods
in the clustering estimate; and (ii) the percentage of ehsst as a function of the standard deviation ratio As we can
of the estimate that are not present in the true underlyiogpserve, the MCMC and ALT performance are very similar,
clustering. and remain almost constant for the rangecofconsidered.

In the first set of simulations we randomly generated 10@0n the other hand, the performance of the UPGMA algorithm
binary topologies with 10 leaves, where the link-level neetr degrades significantly asincreases. The reason for this is that
values (.e., vx —7y(r)) Were generated randomly (independerthe metricsy,; in the UPGMA are strongly affected by the
and identically distributed likel + E, where E denotes a highly variable empirical means, ;, for j € R. In the case of
standard exponential random variable). The variamgefor the ALT, those empirical means do not affect the performance
each pair of leaves was chosen uniformly in the rafige]. because the measurements are weighted according to their
We observed that in general the ALT algorithm and theariance. Hence, for high values of the measurements; ;
MCMC method @ = 0, stopped after 2500 iterations) hachave little impact on the estimated tree.
similar performances under this scenario. On average tfie AL In Figure 4(b) we plot the results of an experiment similar
algorithm identified 93.8% of the clusters in the true cltistg to the previous one, but nowfj = 02/100 for i # {1,2}
and failed to identify 6.2% of them. On the other handnd o7, = 03, = a%c?. In this case we observe that the
the MCMC method identified on average 92.2% of the tryserformance of the three methods degradesvasacreases.
clusters and failed to identify 4.1%. We experimented with d The UPGMA algorithm exhibits the same trends as before,
ferent variance ranges, but the behavior of the two algmsth degrading considerably as increases, but we note also that
exhibited the same trends. The MCMC approach yielded the ALT performance degrades considerably as compared to
general a smaller number of misclassified clusters, althouthat of the MCMC, although it is still much better than that of
the difference in performance between the two algorithniise UPGMA. The reason for this is that the estimate@fhas
was not very significant. In the second set of simulatiorss high variance, since both?, and 03, are large, for large
we considered also non-binary trees, obtained by randonaly There is a higher probability of mispairing leaves 1 and
pruning binary trees. In this case we used the penalizBdsince there is a higher chance of choosing that particular
approach in the MCMC algorithm, with a penalty parametgrair in the greedy decision step. Unlike the ALT, the MCMC
A chosen with the aid of the guidelines described above. Thlgorithm is able to account for the higher variance of those
number of correctly identified clusters was still compagabmeasurements, with respect to all the other measurements,
between the two algorithms (93.1% for the ALT and 91.0%onsequently improving its performance.
for the MCMC), but, as expected, the number of misclassified We conducted Internet experiments that demonstrate the use
clusters was significantly higher for the ALT (19.2% opposedf the techniques described in a practical scenario. In this
to 11.3% for the MCMC). This indicates that the ALT is stillcase we had also access to a partial topology map of the
performing well, except that it is introducing more clusternetwork, obtained using a tool (calléd acer out e) relying
than necessary. In a third experiment we considered larger network device information. While in this case the tojgglo
binary topologies (100 objects), in this case the initigetr can be partially identified usingr acer out e, in many other
estimate (obtained from the ALT algorithm) was generally thcases routers may not cooperate. The point of this particula
tree with the largest likelihood visited by the MCMC methodexperiment is that we can use the acer out e topology

The above experiments indicate that, under the scenarassa “ground-truth” to verify that our method produces an
considered, the ALT is a robust estimator, although it tends accurate topology. The detailed experimental setup can be
overfit the data. It is possible to devise scenarios where tfwaind in [27]. The measurements collected for each pair span
ALT estimator fails, due to its greedy nature. We conducted wide range of values: The maximum empirical average
some simple simulations in order to contrast the characté3464..s) was observed for the measurements involving the
istics of the MCMC, the ALT, and a classic algorithm, théwo machines in Portugal, which is not surprising since ¢hos
unweighted pair-group average method (UPGMA) [10]. Theseceivers share a common bottleneck link with small capacit
simulations are not an exhaustive performance comparisonTte variability associated with the measurements taken at
the algorithms, but are intended to indicate the benefits atithbse machines is also large, especially for the ones taken a
drawbacks of the various methods. the I.S.T. machine (standard deviation as larg&4.s, and

We consider a randomly chosen six receiver binary topa! larger than the standard deviation of measurementsitake
ogy, such that the link-level parameteys — ;) are the at any other receiver). On the other hand, for other pairs of
same for all links % — v = 1). For each pair of leaves receivers we observed empirical averages as lod0@gs and
(i,7) € S we generate 100 independent measurements withrresponding standard deviations as smal&asus.
variance100a7;. In the first experiment we let?;, = 02 /100 In Figure 5 we depict the topology obtained using
foralli # 1, ando?; = a?0?/100, wheres® = 25 anda > 1. traceroute and the topology obtained solely from end-
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Fig. 5. Comparison between ther acer out e topology and the esti-

_ : . : . ted topologies for the Internet experiment described enti@n VI: (a)
to-end measurements, using the algorithms described in topology of the network used for Internet experimentstaioed using

tion V. Using the ALT algorithm we are always going toracerout e. (b) Estimated topology using the ALT algorithm. The three
obtain a binary tree, and thus some of the links might Heks inside the ellipse have link-parameter valugs— ) one order of
artifacts due to data “overfitting” (see [27] for details) the maﬁnﬂltude smaller than all the other links. (c) MPLT obtdinsing MCMC

. . . . ) techniques.
ALT solution we notice that three links have link-parameter
valuesy; — vy k) one order of magnitude smaller than all the
other links (see Figure 5(b)). This suggests that the fodero . . .
inside the ellipse might be an artifact of the binary tree] anclusterlng algorithm, hence greedy. The second algorithm

possibly correspond to a single node in the logical topalo gszf_tre% Ovzrr?grr:ﬁ; tgerg;c()j?)lr?]mSbu?fir:?;rggzedge;rit#rgnOf
Using the MPLT technique we obtain a simpler tree, with le ﬁe space )Z)fp ossible %Iusterin S u(sin Markov )Chain Monte
artifacts than the ALT tree, as depicted in Figure 5(c). bioti P P - gs, 9 . o

that the MPLT is very close to ther acer out e topology Carlo .technlques, aiming to find the maximum likelihood
but fails to detect the backbone connection between Texds gﬁusterlng tree. ) ) )

Indianapolis. We know that the latter connection has a veryor the case of underlying binary trees, consistency of ALT
large bandwidth and the queuing effects on the constituefitd the maximum likelihood approach can be shown. In the
links are too minor to influence measurements. The estimafe@p€ Of non-binary trees the maximum likelihood approach
topologies also place an extra element shared between ke F§NdS 1o fit the data too closely, and does not convey the
computers. Although that element is not a router, hencedgscription of the underlying model properly, having more
is not shown in the topology estimate usingacer out e, clusters than the underlying generf_mng model._ To overcome
it corresponds to a existing physical device. To the best B}0S€ problems we propose a maximum penalized likelihood

our knowledge the detected element is a bandwidth limitati@PProach that enforces the choice of simpler models wheneve
device. the decrease in likelihood is small (as compared to complex

models). Both random search approaches benefit greatly from
a characterization of the maximum likelihood tree, given by
Theorem 1.

In this paper we develop a new framework for hierarchical Although the MCMC approach is very appealing, the fact
clustering based on a generative dendritic cluster model. \that the number of trees in the forest grows combinatorially
pursue a maximum likelihood approach and present two clugith the number of objects to cluster renders the searcheof th
tering algorithms based on this framework. The ALT algarith entire forest difficult. On the other hand the ALT algorithm
has low complexity, and is an agglomerative hierarchichbs low complexity, and appears to perform extremely well in

VIl. FINAL REMARKS
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a variety of scenarios, although overfitting the data. Amse&hus, if ¥ € G(T) then by choosing a smalk > 0 we
in Section V-C, in many cases the ALT is likely to be “close’yet another point inG(T) yielding a higher log-likelihood,
to the MLT, therefore, when the MCMC is started using tha contradiction. Henceéy € 9G(T) where d denotes the
ALT, it improves on the ALT simply by conducting a searctboundary of a set.
over the trees in the vicinity of the ALT. This is particularl  The fact thaty € ag(f) holds, indicates that there are
important when the number of input objects is large. links I such thaty; = 7). Consider now the tree obtained

The framework presented here is very well suited to proby collapsing all such links and keeping the value of the
lems like the network topology identification, wherein theemaining link-level parameters unchanged. Denote the tre
generative model reflects the physical mechanisms involveghd corresponding metric values by and v’ respectively
Ongoing research is aimed at assessing the advantages (88d Figure 6 (a)(b)).
disadvantages of the framework in more general settings, adote that the parameterg satisfy the constrains (2), and
well as deriving performance guarantees under general isiodghat (T’,~') yields the same log-likelihood value &%,7),

Acknowledgements: The authors would like to thank thethat islog p(x|7, f) = log p(x|+',T"). By our construction we
anonymous reviewers for the numerous helpful comments thgle thaty’ € G(T"). We conclude that
allowed us to greatly improve the presentation of the topic.

!
VIIl. PROOFS OF THERESULTS K arg’yglﬁ?)logp(xh) ' (18)

For various proofs in this Section we need the following, gee this suppose that (18) does not hold. Then, by the
lemma, characterizing the sum of strictly concave funation ¢, o argument used in the beginning of the proof (but now

Lemma 2:Leti € {1,...,n} and f;(-) be strictly concave applied to7” instead of7) we must havey’ € 9G(T"), a

furlctlons with (unlque) maximizers; € R. Let g(,x) — contradiction. Note that, according to Lemma-, satisfies
Yoy fi(z). Define zmax = max; z; and Ty = min; ;.

The functiong(x) is strictly concave, has a unique maximize

~ . . The rest of the proof ensues by constructing another tree
T = argmaxyer g(z) and, if Tmax # Tmin theNzmin < T < b

y adding links to7”, such that (9) holds. Consider a node

Tmax- k of T" such thatk has more than two descendants (such a
A. Proof of Lemma. 1 node must exist because we pruned at least one link ffpm
' . _ __Define
The proof of (7) is elementary, and relies on reordering the
terms in (5). Begin by noting that g =Y > Pn(@mnl¥) + hom (@nm|7)
arg max logp(z|y) = meS(i) neS(j)
~eIl'(T) L .
and §;; = argmaxyer gi;(7) , With 4, j € c(k), i # j.
are R Z hij (i |vis) - From Lemma 1 we know that
YEL(T) yev\isy i jeSali,j)=v
Each of the terms in the first summation corresponds to a Vi = al"ggleaﬂg Z 9i5(7) -
single metric value. Since there are no further restriction ijec(k), i#j
:Eo;s_e metric values we can maximize each term separately, Case 1: Suppose that not all the values; are the
atis, same. Then there exists a pair of nodep € c¢(k) such
ij = 4p = arg max Z hia(zr ) that 3,, > i, for all i,5 € ¢(k), and from Lemma 2 we
YR ke Stath )= conclude thats,, # ;. (sincemin, ; f;; < v;, < max; ; 3;;).
wherev = a(i, j). The uniqueness and existence of the abo¥&sing the chosen paio, p), we construct a new treg (refer
solution follows directly from Lemma 2. m !0 Figure 6(c)) adding an extra node descending front and
with children{o, p}. Loosely speaking we are pulling the pair
B. Proof of Theorem 1 of nodeso andp down, adding a new node&‘. The parameter

values for this new tree, denoted by are adjusted such that

The proof is done by construction. Given a tfﬁsatisfying ) , ,
Y= = Y + 0, 6 > 0. All the other metric values remain the

(8) we construct a tred’ satisfying (9). LetT be a tree

satisfying (8). Let same. the that > 0, but_small enough so that the tr€E, ~)
~ , still satisfies the constraints (2).
Y= arg’ym%logp(xh) and The log-likelihood of (T, ~) is identical of the one from
/e ~

_ , (T,~), except for the term involvingy-. Thus

Yunconst= arg max_ logp(X|y’) .
el log p(x|y) — log p(x}7')
Note thatG(T) C I'(T) and thatG(T) is an open set. By = Gop(V) = Gop(11)
concavity of the log-likelihood we have, fore (0,1), Gop(Ve +6) = Gop(7h)
log p(X[(1 — A)¥ + Munconst = Gop((1 = )75, + ABop) = gop(71)

> (1= X)logp(x]5) + Alog p(X|Funconst (1= N gop(Vi) + Adop(Bop) = Gop (1)
> logp(x[y) . A(Gop(Bop) = gop(11)) > 0,

V
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Fig. 6. Trees illustrating the proof of Theorem 1: (a) Orajitree (T',%); (b) Collapsed tre¢T”,~'); (c) Constructed treéT’, ).

where we take\ = §/(8,, — 7;,)- The last inequality follows node. Since each of the death moves has non-zero probability

from uniqueness of the maximizer gf, and 3., # ~;. we are able to reacH” within n(T") moves with non-zero
In conclusion, for§ small enough, we haviygp(x|y) > probability. The same reasoning applies if we considéréd
log p(x|%’), and hence to be the initial state. In this case we would be able to reach
~ T" with non-zero probability using(7”) moves. Considerin
log p(x[y) > log p(X|7) . (19) g Y using (") v

now that for each death move there is a corresponding birth
Case 2:In this case all the values;;, i,j € c(k) are move, we have a sequence of birth moves carryingfré¢o

the same. Thus;, = 3;; for all 4,j € ¢(k). As in Case 1 T". Thus T”;?””(T ) > 0 and hence the chain is irreducible.

we construct another tre@& by adding an extra nodé* ]

descending fronk, such that nodé* has childrerv andp. The

parameter values for this new tree, denotecdybyre adjusted E. Proof of Proposition 5

such thaty,- = +;.. All the other metric values remain the

same. From Lemma 1 we observe thas the maximizer over

I'(T) of logp(x|7). Hencelog p(X|v,T) = log p(x|7, T).
Suppose that all nodes df” with more than two de

scendants correspond to case 2. We could then

T' all_the links we removed (when we constructéd

from T) and obtain the original tred’, but in this case

To prove this result it suffices to show that one can move
from any treel’ € F’ to any other tred” € F’ using the birth
and death moves. From this and the fact thatx|7") > 0
for all 7 € F' it follows that the chain is irreducible. The
aB)enodlcny follows from the chain construction in (13).

The proof strategy is the same as use for Proposition 4, that
is, we begin by applying a sequence of death moves to get
maxy, 77 log p(x7") = Max_, 571 0gp(X|7'), @ CON~ g5 7 10 a tree with no internal links, and then a sequence
tradiction. Hence at least one node’®f corresponds to caseof pirth moves taking us td@”. We only need to check that
1, and so (19) necessarily holds, proving the result. Thersc gach transition tree is still itF’. Without loss of generality

part of the theorem follows frorRemark 1 B suppose thaf” has at least one internal node. It suffices to
show that there is a death move that can be applied’,to
C. Proof of Proposition 2 yielding a tree that is still in the feasible forest.
The result is a consequence of the following lemma. Let 5 be given by (7) for the tre€". Consider an internal

Lemma 3:Let X, be a collection of real random variablenode k such that all its descendants are leaf nodes. Further-
converging in probab|I|ty (whem — o0) to constanta. Let More choose node, such that it is the one with smallest metric
Y, be another collection of random variables converging ¥#/u€7x. When we apply a death move, “killing” the internal
constantb anda < b. Then for anyd > 0 we have that link (f(k),k) we obtain another tred. It can be verified,

Pr(X, > Y,) < 6 for large enoughp. with the aid of Lemma 2, that this tree is still in the feasible
We observed before, in Proposition 1, that the relatiferest, that is € F'. The rest of the proof continues as the
ordering of the metric value§y;;} uniquely determines the Proof of Proposition 4. u

tree. Observing that our estimates of the metric val{igs}

converge in probability to the real metric values, one codes F. Proof of Proposition 6

that the probability of the relative ordering of the estietht  The proof follows from a key observation: In Theorem 1,

and true metric values being different becomes smalles aghe constructed tre€T’,~) has no more links than the initial

increases, and so the result follows. B tree 7. We proceed by contradiction. L& be a candidate
MPLT and suppose

D. Proof of Proposition 4 ~
o : . _ max_ p(x|y") exp(=An(T))
Let T' be the initial state, with(T") internal links. If we v el(T)

apply a sequence of(T") death moves, each one removing > max_p(x|y")exp(=An(T)) .
an internal link, we obtain a tre&” with a single internal ~'eG(T)
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Then, from Theorem 1, there exists another t(@~), [23] G.Schwarz, “Estimating the dimension of a modéiiinals of Statistigs

v € G(T), satisfying the monotonicity property, such that
p(X|]y) > max ﬁp(xh’). Furthermoren(T) > n(T),

vol. 6, no. 2, pp. 461-464, 1978.
[24] M. I. Jordan,Learning in Graphical Modelsser. NATO ASI Series.

~'eg Kluwer, 1998, vol. D89.

thus [25] S. Ratnasamy and S. McCanne, “Inference of multicasting trees and

and soT cannot be the MPLT.
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