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Abstract— This paper develops a new method for hierarchical
clustering. Unlike other existing clustering schemes, ourmethod
is based on a generative, tree-structured model that represents
relationships between the objects to be clustered, rather than
directly modeling properties of objects themselves. In certain
problems, this generative model naturally captures the phys-
ical mechanisms responsible for relationships among objects,
for example, in certain evolutionary tree problems in genetics
and communication network topology identification. The paper
examines the networking problem in some detail, to illustrate
the new clustering method. More broadly, the generative model
may not reflect actual physical mechanisms, but it nonetheless
provides a means for dealing with errors in the similarity matrix,
simultaneously promoting two desirable features in clustering:
intra-class similarity and inter-class dissimilarity.

Index Terms— Model-based clustering, tree models, network
topology identification, Markov Chain Monte Carlo methods.

I. I NTRODUCTION

A clustering algorithm is a process designed to organize a
set of objects into various classes, such that objects within
the same class share certain characteristics. In many cases
it is desirable to perform this task without user supervision.
Let S denote a set of objects, called input objects. While for
some clustering problems, the goal is to partition the set of
input objects into disjoint classes (k-clustering), for some other
problems one desires to obtain a hierarchical structure, where
each class of objects is also partitioned into sub-classes and
so on. In this latter case, one can represent the clustering of
objects as a tree, also called adendrogram, in which the nodes
represent subsets of the input setS. The leaf nodes correspond
to the individual elements ofS, and the root corresponds to
the entire set. Each edge in the dendrogram represents an
inclusion relationship (see Figure 1 for illustration). This paper
develops a new method for hierarchical clustering based on a
generative dendritic cluster model. The objects are viewedas
being generated by a tree-structured refinement process. This
process models the similarities between each pair of objects,
rather than the properties of the individual objects. In certain
problems, this generative model naturally captures the physical
mechanisms responsible for relationships among objects, for
example, in evolutionary trees and network topology identi-
fication. The latter problem was the main motivation for the
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framework introduced by this paper, and is examined in detail
in Section VI. In broader settings, the generative model is not
reflective of actual physical mechanisms, but it nonetheless
provides a means for dealing with measurement errors and
simultaneously promotes two desirable features in clustering:
intra-class similarity and inter-class dissimilarity. For example,
in protein classification, it is difficult to discern an underlying
generative model, but the presented technique provides a
method for addressing errors in similarity measurements.

The new clustering method is based on a maximum likeli-
hood framework. Associated with the set of objectsS is an
|S| × |S| matrix X of estimated pairwise similarity measures
between objects. We assume that the empirical similarity
matrix X is related to an ideal (or “true”) similarity matrix
γ through a probability density function that describes the
possible errors or distortions inX. That is,X ∼ p(x|γ). As
a simple example,p(x|γ) might be a Gaussian density with
meanγ and diagonal covarianceσ2I, in which caseX can
be regarded as a “noisy” version ofγ. In general,X may
be related toγ in a much more complicated manner. The
similarity matrix γ must correspond to a dendritic structure,
but is otherwise unknown and unconstrained. The likelihood
is also a function of the unknown dendritic treeT , governing
the structure ofγ, and it is our main subject of interest. We
present deterministic and Monte Carlo approaches to estimate
the underlying dendritic treeT . We consider also maximum
penalized likelihood approaches that control the complexity of
the tree estimate, preventing the selection of a tree that fits the
particular realization of the measurements instead of the true
underlying tree structure.

Hierarchical clustering is a widely used approach, which
has a long history [1]–[5] and is especially popular for
document clustering [6]–[9]. Most approaches to hierarchical
clustering are agglomerative algorithms that follow a simple
methodology [10], and proceed by repeatedly applying four
steps: (i) choose the pair of nodes with the highest similarity;
(ii) merge the pair into a new node/cluster; (iii) update the
similarities between the new node and the former existing
nodes; and (iv) repeat the procedure until only one node is
left. The crucial step is the update of the similarity values. The
nature of the update is determined through the specificationof
linkage metrics, which embody the closeness (or connected-
ness) of subsets of nodes. Much of the work in hierarchical
clustering research revolves around the derivation of effective
linkage metrics from the similarity matrixX. The choice of
linkage metric has a very strong influence on the resultant
clustering, so it significantly impacts clustering performance.
The suitability of a specific linkage metric depends on the
problem at hand. In our model-based approach this issue is
less arbitrary since the linkage metrics are induced from the
assigned probability densityp(x|γ, T ). In Section V-A we
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Fig. 1. Dual representation of an hierarchical clustering:(a) Example of an
hierarchical clustering, (b) corresponding tree representation.

present an algorithm following the agglomerative framework,
where the linkage metric arises from the probability model.
For the simple case of the Gaussian model mentioned above
(with a diagonal covariance matrixσ2I) this leads essentially
to the well known Unweighted Pair-Group Average Method
(UPGMA) [10].

Other model-based approaches have been used for hierar-
chical clustering in the past [11]–[14]. Such methods usually
model the clusters directly, as Gaussian components, for
example. The cluster models induce a distance measure. The
work of Banfield and Raftery [5] is representative of this
strategy. In contrast, our approach is based on a generative
model of the similarity matrixX rather than a model of the
objects in the clusters. Therefore, the objects to be clustered do
not need to be directly embedded in a metric space. This allows
us to express possible errors or uncertainties in our similarity
measures in a simple manner. We are not aware of previous
work that has adopted this approach. Moreover, in certain
problems such a formulation is physically motivated and more
natural than devising models for the individual classes. This is
particularly true if there is an underlying hierarchical structure.

This paper is organized as follows: Sections II and III in-
troduce the problem and the likelihood framework. Section IV
provides some important characterizations and key properties
of our framework. In Section V two algorithms seeking the
solution of our problem are introduced; one more deterministic
and greedy in nature, and the other based on a random search
technique. In Section VI we present a practical and relevantap-
plication of the concept and algorithms introduced previously.
The section includes some simulation and experimental results.
Finally, in Section VII, we make some concluding remarks.
The proofs of various results in the paper are presented in
Section VIII.

II. PROBLEM STATEMENT

A hierarchical clustering of a set of objects can be described
as a tree, in which the leaves are precisely the objects to be
clustered. An example is depicted in Figure 1 and it is used
to clarify the concepts introduced below. In our formulation
we focus primarily on the tree representation.

Let T = (V, L) denote a rooted tree with nodesV and
directed linksL (we consider a strongly acyclic graph, that is,
if we disregard the direction of the edges the graph is a tree).
Denote the root node byRoot. Denote byS the leaf nodes.
Each leaf node corresponds to one object in the input setS,

and the root node corresponds to a cluster encompassing all
input objects. For example, in Figure 1,S = {4, 6, 7, 8, 9}.

Every node has at least two descendants, apart from the
leaf nodes, which have none. If all internal nodes have exactly
two descendants then the tree is called binary. For each node
i ∈ V let f(i) denote the parent ofi, e.g., f(8) = 5. We
can identify each link with the corresponding end node,i.e.,
(f(i), i) ∼ i, (f(i), i) ∈ L. Let a(i, j), i, j ∈ V , denote the
nearest ancestor of the pair of nodes(i, j), e.g., a(4, 9) = 2.
We define alsoc(i), i ∈ V , as the set of children nodes ofi,
e.g., c(2) = {4, 5}. For a given nodek we denote byS(k) the
subset of leavesS with k as an ancestor. This set corresponds
to the elements in the cluster represented by nodek, e.g.,
S(2) = {4, 8, 9}.

For each pair of input objects we can consider a similarity
metric value. This value reflects how similar (with respect
to certain characteristics) the two objects are (the largerthe
value, the more similar they are). Letγij denote the similarity
between two input objectsi, j ∈ S. The goal of clustering is to
group inputs together that have the large pairwise similarities
and to simultaneously separate inputs with lesser similarities.
We refer to each such group as a cluster.

Two key notions in clustering are the inter-cluster and intra-
cluster similarities. We define the inter-cluster similarities of
two disjoint clusters as the similarities of pairs of objects
where one element in the pair belongs to one cluster and
the other element belongs to the other cluster. For a single
cluster, we define the intra-cluster similarities as the pairwise
similarities of objects within the cluster. A good clustering
is one in which the inter-cluster similarities between disjoint
clusters are small, compared to the intra-cluster similarities
of each individual cluster. Ideally, the inter-cluster similarities
between two disjoint clusters are identical;i.e., two clusters
share the same similarity value between each other, for ex-
ample, in the clustering depicted in Figure 1,γ46 andγ47 are
assumed to be identical (this corresponds to the inter-cluster
similarities of clusters{4} and{6, 7}). However, in practice,
this notion of identical similarity between clusters is not
generally met by the empirical similarities{xij} for several
reasons. First and foremost, the hierarchical cluster structure
is typically an approximation of the physical relationships
between objects, and the actual relationships may not strictly
adhere to the hierarchical structure. Secondly, the measured
similarities may be contaminated with errors or may be biased
due to limitations of the measurement system. For example,
in Figure 1, the measured similaritiesx46 and x47 (defined
formally in the next section) may not be equal to one another.

In our model, enforcing identical inter-cluster similarities
between disjoint clusters is accomplished as follows. Consider
an arbitrary treeT = (V, L). With each node in the tree we
associate a metric valueγk ∈ R, k ∈ V . This metric value
provides a measure of the similarity of the elements inS(k).
For each pair of objectsi, j ∈ S we require the pairwise
metric valueγij to be the metric value of the nearest ancestor,
that isγij ≡ γa(i,j). Note that this enforces symmetry of the
pairwise metrics values (i.e., γij = γji). The valueγij can
be regarded as a characterization of the shared portion of the
paths from the root toi and j. The shared path for a pair of
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nodes(i, j) is the path from the root to nodea(i, j). Notice
that the tree structure imposes restrictions onγij ; for example,
if two different pairs of nodes have the same shared paths then
their similarity values must be the same,e.g., consider the tree
in Figure 1; The pairs of nodes(6, 8) and(4, 7) have the same
shared paths, thusγ68 = γ47.

Define the matrixγ = (γij : i, j ∈ S). According to the
discussion above, in order forγ to be compatible with the tree
structure it must belong to the set

Γ(T ) ≡ {γ : γij = γkl if a(i, j) = a(k, l)} . (1)

Clearly matrices in this set are not only symmetric, but havea
more constrained structure. We disregard node self-similarities
γii, because these do not provide relevant information for the
clustering task.

To ensure identifiability of the treeT (that is, to ensure we
can fully recover the tree given the set of pairwise metrics)
we require the metricsγ to satisfy themonotonicity property,
which requires thatγf(k) < γk for any internal nodek in
the tree (k ∈ V \ {S,Root}). This property has a very
simple graphical interpretation: deeper nodes (the leavesare
the deepest nodes) have greater similarity values. From a
clustering perspective this enforces that the inter-cluster sim-
ilarities between two disjoint clusters are small, compared to
the intra-cluster similarities of each one of the two clusters. We
will see shortly that knowledge of the metric values for each
pair of elements inS and the enforcement of the monotonicity
property are sufficient for identification of the underlyingtree
topology.

For a given treeT , the set of all metrics satisfying the
monotonicity property, denoted themonotonic metric subset,
is defined as

G(T ) ≡
{
γ ∈ Γ(T ) : γf(k) < γk, ∀k ∈ V \ {Root, S}

}
.
(2)

Given the pairwise similaritiesγ characterizing the input set,
it is possible to reconstruct the dendritic tree. For example,
referring to Figure 1, the metricγ89 will be greater thanγi9 for
all i ∈ S \{8, 9}, revealing that nodes8 and9 have a common
parent in the tree. Using a simple agglomerative bottom-
up procedure, following the same conceptual framework as
many hierarchical clustering methods [1], [4], one can recover
the underlying tree. The following result, appearing in a
networking context in [15], ensures that for a similarity matrix
γ satisfying the monotonicity property, the set of pairwise
similarities completely determines the tree.

Proposition 1: Let T be a tree topology with object setS.
Let {γij} be the set of pairwise similarities, corresponding to a
monotonic metric onT . ThenT is the only tree with pairwise
similarities{γij} satisfying the monotonicity property. That is
γ ∈ G(T ), andγ 6⊆ G(T ′), ∀ T ′ 6= T .

The proof of the result follows by constructing the ag-
glomerative bottom-up algorithm suggested above, and can be
found in [15].

The goal of our work is to determine an optimal hierarchical
clustering tree with respect to the probabilityp(x|γ). Our
optimality criterion will be specified in the next section, after
introducing some basic notation, terminology and concepts.

III. L IKELIHOOD FORMULATION

Recall thatX denotes the empirical similarity matrix. These
are the accessible measurements, which convey information
aboutγ and T . We consider the empirical similarities to be
imperfect, possibly contaminated with errors, or only crude
reflections of the true similarities between objects. We regard
X as a random process parameterized byγ andT .

For a given unknown treeT let X ≡ {Xij : i, j ∈ S, i 6=
j}, where eachXij is a random variable parameterized by
γ ≡ {γij} ∈ G(T ). Let p(x|γ) denote the probability density
function ofX, parameterized byγ. A samplex ≡ {xij : i, j ∈
S, i 6= j} of X is observed. Notice that, in general,xij 6= xji.
When p(x|γ) is viewed as a function ofT and γ ∈ G(T ) it
is called the likelihood ofT andγ. The maximum likelihood
tree estimate is given by

T ∗ = arg max
T∈F

sup
γ∈G(T )

p(x|γ) , (3)

whereF denotes theforestof all possible trees with leavesS.
If the maximizer of the above expression is not unique define
T ∗ as one of the possible maximizers. In many situations we
are not primarily interested in̂γ(x), an estimate ofγ from the
measurements, hence we can regardγ as a nuisance parameter.
In that case (3) can be interpreted as a maximization of the
profile likelihood [16]

L(x|T ) ≡ sup
γ∈G(T )

p(x|γ) . (4)

The solution of (3) is referred to as the Maximum Likelihood
Tree (MLT). Searching for this tree is our attempt to find
the tree associated with the unknown pairwise metricsγ.
The remainder of the paper presents various techniques and
characterizations of the likelihood structure that lead usin that
direction.

In our model, we also assume that the probability density
has a diagonal structure. Specifically, the random variables
Xij are independent and have densitiesp(xij |γij), i, j ∈ S,
i 6= j. This assumption is somewhat restrictive (e.g., the
observed similarities cannot have correlated errors), butwe
feel it is not unreasonable in many applications, such as the
networking problem we consider later. Moreover, without a
diagonal structure it may not be possible to base the clustering
process on local algorithms, like the common agglomerative,
bottom-up procedure mentioned in the previous section.

To simplify our presentation, denote the log-likelihood
by hij(xij |γij) = log p(xij |γij). We will also assume that
hij(xij |γij) is a strictly concave functional ofγij having a
maximizer inR (note that the maximizer is unique since the
function is strictly concave). The log-likelihood is hence

log p(x|γ) =
∑

i∈S

∑

j∈S\{i}

hij(xij |γij) . (5)

The assumption of concavity is strong, but not uncommon
in most familiar probability models. Furthermore, note that,
although parameterized by a common parameterγij , the log-
densitieshij and hji are not necessarily the same (as in the
example in Section VI), so the two measurementsxij andxji

are different in nature, and convey different information.
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IV. CHARACTERIZATION OF THE MAXIMUM L IKELIHOOD

STRUCTURE

The optimization problem in (3) is quite formidable. We
are not aware of any method for computation of the global
maximum except by a brute force examination of each tree
in the forest. Consider a tree withN leaves. A very loose
lower bound on the size of the forestF is N !/2. For example,
if N = 10 then there are more than1.8 × 106 trees in the
forest. This explosion of the search space precludes the brute
force approach in all but very small forests. Moreover, the
computation of the profile likelihood (4) is non-trivial because
it involves a constrained optimization overG(T ).

Using the model (5) we have thatp(x|γ) is a continuous and
bounded function ofγ and hence we can rewrite the profile
likelihood as

L(x|T ) ≡ max
γ∈G(T )

p(x|γ) , (6)

whereG(T ) denotes the closure of the setG(T ). The profile
likelihood can be computed by solving this constrained opti-
mization problem, although the solution is still fairly involved.
The following results establish some key properties for this
problem. The next lemma characterizes a modified version of
the profile likelihood (6) (the version of the profile likelihood
in the lemma does not involve the monotonicity constraint,
that is, the optimization is overΓ(T ) instead ofG(T ), the
monotonic metric subset).

Lemma 1:Let T be an arbitrary tree. The solution of

γ̂ = arg max
γ∈Γ(T )

p(x|γ)

is unique and given by

γ̂ij = arg max
γ∈R

∑

k,l∈S:a(k,l)=a(i,j)

hkl(xkl|γ) . (7)

The proof of the lemma is elementary and it is presented in
Section VIII-A. The evaluation of this version of the profile
likelihood for a given tree is very simple, following from
equation (7). This is a one-dimensional concave maximization
problem that can be solved efficiently using simple numerical
methods. For certain classes of models (like the one in
Section VI) it can also be solved analytically.

The unconstrained optimization in the lemma above is easy
to solve, and the following theorem (proved in Section VIII-B)
shows that it is sufficient for the purposes of determining the
MLT.

Theorem 1:Consider a fixed realizationx of X. Let
log p(x|γ) be given by (5) and̃T be a tree such that

max
γ ′∈Γ(T̃ )

p(x|γ′) > max
γ ′∈G(T̃ )

p(x|γ′) . (8)

Then there exists another tree(T, γ), γ ∈ G(T ), satisfying
the monotonicity property, such that

p(x|γ) > max
γ′∈G(T̃ )

p(x|γ′) . (9)

In particular, if T ∗ is the solution to (3),i.e., the MLT, we
have

arg max
γ′∈Γ(T∗)

p(x|γ′) = arg max
γ′∈G(T∗)

p(x|γ′) . (10)

Remark 1: Consider an arbitrary treẽT . Suppose that

the maximum oflog p(x|γ) is attained forγ ∈ Γ(T̃ ) \ G(T̃ ),
that is, expression (8) holds. The theorem implies that in that
case there exists another tree(T, γ), γ ∈ G(T ), with a higher
likelihood. Consequently the treẽT cannot be the maximum
likelihood tree (10).

Remark 2: The second part of the theorem (10) shows
that it is unnecessary to perform the constrained optimization
overG(T ). For each tree, we can compute the much simpler
optimization (overΓ(T )), using Lemma 1, and check if the
resulting maximizer lies in the setG(T ).

Define the set of trees

F ′ =

{
T ∈ F : arg max

γ∈Γ(T )
p (x|γ) ∈ G(T )

}
.

Note that the maximum likelihood tree belongs to this set,i.e.,
T ∗ ∈ F ′. We callF ′ the feasible forest. Despite this charac-
terization, a search overF ′ might still be too demanding.

Remark 3: Note that we can restrict our attention to
binary trees, because the maximum of the likelihood function
can always be achieved by a binary tree. To see this, simply
notice that for any non-binary branching point (e.g., a node
with three or more branches) there exists a sequence of binary
branchings with the same (or larger) likelihood, since the extra
branches provide extra degrees of freedom in fitting to the
empirical similarities. Of course, it may be desirable to obtain
a clustering with as few branches as possible, and this issue
will be examined in the next section.

V. H IERARCHICAL CLUSTERING ALGORITHMS

In this section we present two algorithms intended to solve
the problem (3). Hierarchical clustering algorithms generally
belong to one of two types: bottom-up, agglomerative con-
structions or top-down, divisive methods. Our probabilistic
model for the similarity matrix allows us to develop a novel
agglomerative algorithm based on the likelihood function.Fur-
thermore, by viewing the (profile) likelihood function as a dis-
crete probability mass function, we also devise a Metropolis-
Hastings search strategy that circumvents the greedy search
strategy associated with agglomerative and divisive algorithms.

A. Bottom-up Agglomerative Approach

At the end of Section II we noticed that the pairwise
similarity values can be used to recover the underlying tree
structure through a bottom-up merging procedure. In most
practical scenarios, we only have access to the measurements
x, conveying information aboutγ (and hence aboutT ). In this
case we can still develop a bottom-up agglomerative clustering
algorithm to estimate the true dendrogram.

As pointed out inRemark 3, we can restrict our attention to
binary trees, and this restriction leads to a particularly simple
algorithm for clustering. The algorithm proceeds by forming
estimates of the pairwise similarities for each pair of leaf
nodes:

γ̂ij = arg max
γ∈R

(hij(xij |γ) + hji(xji|γ)) , i, j ∈ S, i 6= j .
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1) Input: Set of input nodesS, likelihood functions{fij}.
2) Initialization: S′ := S, V := S, S(r) = {r}, ∀r ∈ S,

and γ̂ij = arg maxγ∈R (fij(xij |γ) + fji(xji|γ)).
3) Find the a pair of nodesi, j ∈ S′ such that

γ̂ij ≥ γ̂kl, ∀k, l ∈ S
′
.

4) Denote byk the new node, the inferred parent of the
nodesi, j. SetV := V ∪ {k}, S′ := S′ ∪ {k} \ {i, j}
andS(k) = S(i) ∪ S(j). Set alsof(i) := k; f(j) := k.
Define

γ̂kl = γ̂lk ≡ arg max
γ∈R

∑

r∈S(k)

frl(xrl|γ) + flr(xlr|γ) ,

wherel ∈ S′ \ {k}.
5) If |S′| > 1 go back to 3. Otherwise set Root≡ k.
6) Output: The node setV and the parent functionf :

V \ {Root} → V , defining a unique tree. Also the set of
similarity estimateŝγ, if desired.

Fig. 2. Agglomerative Likelihood Tree (ALT) algorithm.

One expects the above estimated pairwise similarities to be
reasonably close to the true similaritiesγ, with the differ-
ences being due to measurement noise and limitations of the
measurement procedure.

Let i andj be the indices of the leaf nodes with the highest
similarity, that is

γ̂ij ≥ γ̂lm, ∀l, m ∈ S .

We infer thati andj are the most similar leaf nodes, implying
that they have a common parent in the dendrogram. Denote
their parent node byk. In other words, we are constructing the
clusterS(k) = {i, j}, and nodek in the dendrogram represents
that cluster. Assuming that our decision is correct then the
tree structure imposes the conditiona(i, l) = a(j, l) for all
l 6∈ {i, j}. Hence we update our pairwise similarity estimates
for pairs involvingi andj, using Lemma 1. Furthermore, since
γ̂il = γ̂jl for any l 6∈ {i, j}, we can just add nodek as a new
leaf node, and removei and j from the leaf set. Define the
new leaf setS′ = S

⋃
{k}\{i, j}. We need to define pairwise

similarity estimates for pairs involving the new nodek:

γ̂kl = γ̂lk ≡ arg max
γ∈R

∑

r∈S(k)

hrl(xrl|γ) + hlr(xlr |γ) ,

wherel ∈ S′\{k}. This procedure is iterated until there is only
one element left inS′. The algorithm, denoted Agglomerative
Likelihood Tree (ALT), is detailed in Figure 2.

Notice that the number of elements ofS′ is decreased by one
at each step of the algorithm, guaranteeing that the algorithm
stops. The algorithm structure ensures similarity estimates γ̂

satisfy the monotonicity property, with respect to the finaltree
(this follows from the algorithm structure and Lemma 2 in
the Appendix). Notice also that the algorithm always yieldsa
binary tree.

Before moving on, let us comment briefly on the binary
tree restriction. Suppose that the underlying tree were non-
binary, consisting of only the root node and three leaf nodes.
Let the leaf nodes be denoted by 1, 2 and 3. Thenγ12 =

γ13 = γ23. The estimates of the metric values are almost surely
not going to be identical (since the density is continuous).
Therefore, in this case we notice that the maximum likelihood
tree must have one internal node (this should be clear from
the proof of Theorem 1, as the estimated binary tree cannot
match the underlying, non-binary tree. In conclusion, when
the underlying tree is non-binary, the MLT will have extra
links (not in the underlying tree), used to fit the data more
accurately.

B. Asymptotic Performance of ALT

As pointed out before, one expects the estimated pairwise
similarity valuesγ̂ to be close to the true similaritiesγ. In
this section, we characterize the limiting behavior of ALT as
the estimated similarities tend to the true similarities. Define

γ̂ij(x) ≡ arg max
γ∈R

hij(xij |γ) + hji(xji|γ) ,

where i, j ∈ S. Given the measurementsx, γ̂ij(x) is the
maximum likelihood estimate of the pairwise similaritiesγij

(without further knowledge of the tree topology). In various
scenarios we can increase the accuracy ofγ̂ij(x) by consid-
ering more elaborate similarity measurements, or considering
multiple (roughly independent) measurements.

Let ρ “index” the accuracy of the estimates. For example,
ρ ∈ R

+ can represent a signal-to-noise ratio, governing the
measurements, orρ ∈ N can denote the number of independent
measurements made for each input pair and averaged to com-
pute the estimate. Suppose thatγ̂ij(x) converges in probability
to γij asρ tends to infinity.

Proposition 2: For a binary treeT the ALT algorithm is
consistent, that is, ifT̂ is the tree obtained by the ALT
algorithm then

lim
ρ→∞

Pr(T = T̂ ) = 1 .

Also, asρ grows, the probability that this is the only binary
tree in feasible forestF ′ converges to 1.

The proposition (proved in Section VIII-C) indicates that
the ALT algorithm perfectly reconstructs the original binary
tree, provided that one can estimate the similarity values with
enough accuracy. The second part of the result characterizes
the feasible forestF ′, and has the following important impli-
cation.

Proposition 3: For binary trees, the MLT is a consistent
estimator of the true dendritic tree. That is, ifT ∗ denotes the
MLT then limρ→∞ Pr(T = T ∗) = 1.

Proof: The proof of this result is elementary, since
the maximum likelihood tree is binary and belongs toF ′,
therefore, asρ increases, the probability that the MLT is the
only binary tree inF ′ converges to one, by Proposition 2.

For non-binary trees, neither the MLT nor the ALT are
consistent, but nevertheless the inferred tree is “compatible”
with the true underlying tree, in the sense that it has extra,
superfluous links, that are used to fit the data more closely.
The incremental differences,̂γk − γ̂f(k), in such cases will
be typically small, and these extra links can be eliminated
by using a simple thresholding procedure, collapsing the links
with incremental difference smaller than a certain threshold.
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Of course, selecting a reasonable threshold is a tricky issue.
Another possibility is to consider cliques of more than two
nodes at each agglomeration step, which allows for non-binary
trees. Such cliques are selected if all nodes in a clique have
similarities within a small range, indicating that they arenearly
equally similar to one another. This possibility requires the
specification a tolerance or threshold to define the notion ofa
“small range”. However, it is not clear which cliques shouldbe
agglomerated first. With either approach, deleting seemingly
superfluous links or merging larger groups, the extension of
ALT beyond binary models thus requires the specification of
extra tuning parameters, and therefore we do not investigate
this issue further. Instead, we advocate a Monte Carlo method
that is capable of handling non-binary trees, and circumvents
the greedy nature of ALT.

C. Markov Chain Monte Carlo Method

Although the ALT algorithm is a consistent estimator of
the true dendrogram (when it is a binary tree), it is a greedy
strategy, based on local decisions over the pairwise metric
values. Unlike the ALT, the MLT estimator takes a global
approach, seeking for the best (in a maximum likelihood sense)
tree. The price to pay is that we now must search over the
entire forestF . We can simplify this search using Theorem 1,
and make the search only over the setF ′, but this is still a very
computationally demanding task. In this section we propose
a random search technique to efficiently search the forest of
trees.

Consider the profile likelihoodL(x|T ), as defined in (6).
The maximum likelihood tree was defined as

T ∗ = arg max
T∈F

L(x|T ) . (11)

For a fixed measurementx we can regard the profile likelihood
L(x|T ) as a discrete distribution overF (up to a normalizing
factor). Then, one way of searching the setF is to sample
it according to this distribution. More likely trees are then
sampled more often than the less likely trees, making the
search more efficient. This approach can be viewed in a
Bayesian framework, with the adoption of a prior on the forest
of trees that renders each tree equally likelya priori.

Evaluation of the profile likelihood (6) is complicated, as
pointed out before, since it involves a constrained optimization
over the monotonic metric setG(T ). As we observed in
Section IV the MLT belongs to the set of feasible treesF ′.
For trees inF ′ one can compute the profile likelihood very
easily using Lemma 1. Also, given an arbitrary tree, one can
easily verify if that tree belongs toF ′ by performing the less-
constrained optimization (overΓ(T )), using Lemma 1, and
then checking if the resulting maximizer lies in the setG(T ).
The main idea is then to perform the search overF ′, instead
of F . Define

L′(x|T ) =

{
L(x|T ) if T ∈ F ′

0 otherwise
. (12)

The above expression can be evaluated much faster than
(6). We can regard (12) as a distribution overF (up to a
normalizing function) and proceed as before. Again, we can

Fig. 3. The birth-step and death-step moves illustrated: The birth-step selects
a node with more than two children, chooses two of these children, and inserts
an extra node as the new parent of these children. The death step selects and
deletes a internal node.

fit this approach in a Bayesian framework, where we now
consider a prior such that any tree in the feasible setF ′ is
equally likely, and trees outside this set have probabilityzero.

There are numerous ways of drawing samples from a
distribution that is known up to a normalizing factor [17].
Here we outline an MCMC approach. The algorithm we
present is relatively simple and serves mainly to illustrate
the basic methodology. There are many strategies that can be
applied to improve the performance, such as smart restarts and
annealing [18]. We do not pursue such enhancements in this
paper, but believe that it is a fertile avenue for future work.

One possible way to perform the sampling is to use the
Metropolis-Hastings algorithm [19], [20]. For this we needto
construct a irreducible Markov chain with state spaceF (note
that in this case the state space is finite), so that each state
corresponds to a tree. We allow only certain transitions (or,
equivalently, allocate certain transitions probability 0). For a
given state (a tree)si ∈ F we can move to another state
(tree) using two possible moves: (i) a “death” move, in which
we collapse an internal edge (not a leaf edge), identifying the
endpoints of the collapsed edge; and (ii) a “birth” move, in
which we first choose a pair of children of a nodek with three
or more children, then introduce a new nodek∗ and make it
the parent node of the chosen pair and a child ofk. The nature
of the moves is illustrated on Figure 3.

We build our Markov chain using a step-by-step approach.
For a given statesi ∈ F there arensi

allowed transitions
(both deaths and births). This number can be easily computed.
At any statesi, we choose among the possible transitions
uniformly, that is, we choose a particular transition with
probability1/nsi

. The transition matrix for this chain is

qT,T ′ = Pr(si+1 = T ′|si = T )

=

{
1

nT
, if T ′ is within one move fromT

0 , otherwise
.

Let {si : i ∈ N} be the chain satisfying the condition above.
Proposition 4: The chain{si} is irreducible, that is

∀T, T ′ ∈ F ∃n ∈ N : q
(n)
T,T ′ > 0 ,

where q
(n)
T,T ′ is the probability of reaching stateT ′ starting

from stateT usingn moves.
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The proof of the proposition is presented in Section VIII-D.
Using a generalization of the Metropolis algorithm [19] due

to Hastings [20], we construct another Markov Chain in order
to obtain a chain whose unique limit distribution (and also
unique stationary distribution) is preciselyL′(x|T ). Thus if
we sample from this chain for a sufficiently large period of
time, the observed states will be samples of the distribution
L′(x|T ), regardless of the initial state.

The new chain can be constructed in a two-stage fashion.
Define the probability of acceptanceαT,T ′

αT,T ′ ={
min

{
L′(x|T ′)·qT ′,T

L′(x|T )·qT,T ′

, 1
}

, if L′(x|T ) · qT,T ′ > 0

1 , otherwise
.

For a given stateT ∈ F ′ we randomly choose the possible
next state according toqT,T ′ , and accept that transition with
probabilityαT,T ′ . Hence the transition matrix of the new chain
is {rT,T ′} with

rT,T ′ =

{
αT,T ′qT,T ′ if T ′ 6= T
1 −

∑
T ′′ 6=T αT,T ′′qT,T ′′ if T ′ = T

. (13)

We need to ensure now that the above chain has a unique limit
distribution, proportional toL′(x|T ). Clearly, if we start in a
state inF ′ the next state is going to be inF ′ (with probability
one). One needs to be sure that the chain with transition matrix
{ri,j} is irreducible and aperiodic, and thus has a unique limit
distribution (12) [21]. The following proposition, provedin
Section VIII-E, ensures these properties.

Proposition 5: The chain with state spaceF ′ and transition
matrix {rT,T ′} is irreducible and aperiodic.

To get our (approximate) solution of (11) we simulate the
above chain and consider the MAP estimator, that is, the state
with largest valueL̂(x|T ) visited. The longer the chain is
simulated, the higher is the chance of visiting the MLT at
least one time. Theoretically, the initial state of the chain
is not important, provided that the chain is simulated for a
sufficient period. In practical applications, on the other hand,
it is of crucial importance, since the state space is very large,
and reaching the region where the MLT lies may take a large
number of transitions. Starting the chain simulation from the
tree obtained using the ALT algorithm is a reasonable choice,
since this is a consistent estimator in the binary case, and
one expects the ALT to be “close” (in terms of the number
of moves) to the actual MLT tree. If that is the case, the
MCMC starts by searching trees that are near the ALT tree,
and therefore close to the MLT. This is particularly relevant for
clusterings involving a large number of input objects, yielding
a very large state-spaceF ′, difficult to explore completely in
reasonable time. Starting the chain from the ALT ensures that
the search will focus on a promising region of the forest. Other
techniques can be used to enhance the performance of this
method, for example restarting the chain at various different
trees [18].

It is important to point out that, although the states visited by
a simulation of the chain constructed above may be regarded
as samples from the (non-normalized) discrete distribution
L′(x|T ), these samples are not independent, and so, if the

distribution is multimodal, we can get “stuck” on one of
the modes of the distribution, although eventually (i.e., with
positive probability) we will jump out. This further illustrates
that the initial state of the chain is of utmost importance ina
practice. At the end of the following section we propose a way
of directing the search, to prevent some of these problems.

D. Maximum Penalized Likelihood Estimation

One drawback of the maximum likelihood approaches to
our problem is that, in general, trees with more links have
higher likelihood values (since the extra degrees of freedom
they possess allow them to fit the data more closely). If the true
treeT is not binary then it is going to yield a lower likelihood
value than a certain binary tree. This is an example of the
“overfitting” problem in model selection. The extra links inthe
MLT are there only to fit the particular set of measurements
more accurately, and do not reflect the underlying model we
wish to identify. The usual strategy for tackling this issues is
to weight the complexity of the models involved, penalizing
models that are more complex [22], [23]. The basic idea
behind penalized estimators is to find the “best”simplemodel.

In this approach, instead of maximizing the profile likeli-
hood we will maximize the functional

Lλ(x|T ) = L(x|T ) exp(−λn(T )) , (14)

wheren(T ) is the number of internal links in the treeT , and
λ ≥ 0 is parameter that controls the trade-off between the fit
of the data and the tree complexity (number of links). Our
estimate is then

T ∗
λ = argmax

T∈F
logLλ(x|T ) . (15)

We denoteT ∗
λ by the Maximum Penalized Likelihood Tree

(MPLT). Notice that if λ = 0 this is precisely the MLT
estimate. The higher the value ofλ, the more effect the
penalization has, relative to the likelihood (data-fittingterm).
Large values ofλ lead to trees with fewer links. Note that
the complexity penalization criterion above takes a global
approach, and it is not based on local decisions, unlike the
pruning techniques mentioned in the end of Section V-B in
the context of ALT algorithm.

The following result, similar in spirit to Theorem 1, provides
a partial characterization of the solution of (15) and alleviates
the search for the optimal tree.

Proposition 6: The MPLTT ∗
λ is in the feasible tree setF ′.

This result (proved in Section VIII-F) indicates that we
can use our MCMC approach as before, but now instead of
L′(x|T ) we useL′

λ(x|T ) = L′(x|T ) exp(−λn(T )). The chain
obtained in this fashion is still irreducible and aperiodicand
hence has a unique limit distribution.

The choice of the complexity penalty parameterλ is a
crucial step in the above approach. There is a vast literature
addressing this issue; a classic technique is the Minimum
Description Length principle [22]. In this paper the choice
of λ follows from the analysis of a simple, but relevant model
(see Section VI). Suppose thatxij is normally distributed with
meanγij and varianceσ2 (that isxij ∼ N (γij , σ

2)). Consider
now a tree with three leaf nodes (which we refer to as the true
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tree). We have essentially two possibilities: (i) either all the
three leaves have a common parent; (ii) the tree is binary. In
both cases we can ask when does the penalized approach fails,
producing a tree with a different number of nodes than the true
tree. The two failure probabilities can be easily computed;for
case (i) the failure probability is a decreasing function ofλ, for
case (ii) it is an increasing function ofλ. Ideally we want the
two probabilities to be small. Balancing these two quantities
provides a tradeoff that can be used to choose the appropriate
value of λ. Despite the simplicity of the model, it provides
useful guidelines for the choice of penalty parameter for larger
numbers of objects, under the Gaussian model.

As a closing remark on this Section, notice that a simple
procedure, inspired by Simulated Annealing techniques [24],
can be used in the context of the MCMC method developed.
The idea is to start simulating the Markov chain with a large
penalty parameterλ and reduce it gradually (according to
some “cooling schedule”). This technique is different than
the traditional simulated annealing procedure, but follows the
main conceptual ideas. This approach forces the search to
focus first on simpler trees (those with less links) and then
gradually extend the search to explore increasingly complex
trees. This reduces the possibility of the search being stuck in
a undesirable region (a local maximum). There are several
parameters that need to be tuned, and we do not address
this issue here. Discussions on general simulated annealing
techniques can be found in [24].

VI. N ETWORK TOPOLOGY IDENTIFICATION

In this Section we present a practical example that illustrates
the use of the above framework. We discuss some simulation
results, as well as practical experimental results. Consider a
communication network, in which a sender node transmits
information packets to a set of receiver nodes, denoted by
S. The receivers are, in this case, the usual “objects” to be
clustered. Assume that the routes from the sender to the re-
ceivers are fixed. The physical network topology is essentially
a graph, where each node corresponds to a physical device
(e.g., router, switch, terminal, etc.) and the links correspond
to the connections between these.

The problem we address is the identification of the net-
work topology based on end-to-end measurements, which is a
practical problem relevant in the networking community [25]–
[28]. Knowledge of the network topology is essential for tasks
like monitoring and provisioning a network. There are tools,
such astraceroute, that rely on close cooperation from
the network internal devices, such as routers. These tools are
effective only when the devices are responsive and working
properly. These conditions are becoming less common as
the network grows, and with the increasing concerns with
malicious activities (denial-of-service attacks, worms,etc.).
Therefore it is important to be able to infer information from
the network without cooperation from the internal devices.
In the following, we consider only end-to-end measurements,
preventing us from utilizing internal network device informa-
tion. This forces us to rely solely on the traffic and queueing
characteristics. With this limited information, it is onlypos-
sible to identify the so-called “logical topology”, definedby

the branching points between paths to different receivers.This
corresponds to a tree-structured topology with the sender at the
root and the receivers at the leaves, as depicted in Figure 1.
The tree topology is effectively a hierarchical clusteringof the
receivers, where each cluster corresponds to the maximal set
of receivers that share a common device in the network.

We define a similarity metricγij , associated with each
pair of receiversi, j ∈ R. The value ofγij is related to
the extent of the shared portion of routes from the sender to
receiversi andj (i.e., the shared path for pair(i, j), as defined
before). We cannot measure the pairwise metrics directly,
so we estimate them, performing measurements across the
network. In most cases, the measurement is based on active
probing, involving the transmission of probe packets from
the source to the receivers. In earlier work, we proposed
a metric based on delay difference measurements [27]. The
delay difference measurements provide (noisy) versions ofa
metric related to the number of shared queues in the paths to
two receivers. More precisely, if the constituent links of the
shared path have bandwidthsBm, the pairwise metric value
is approximately proportional to

∑
1/Bm, the sum of the

inverse bandwidths of the constituent links. Thus each link
in the shared path contributes an additional positive measure
that is inversely proportional to its bandwidth, and therefore
the monotonicity property follows naturally.

The measurements{xij} are the empirical means of re-
peated delay difference measurements. Under reasonable as-
sumptions, the measurements are statistically independent,
and, according to the Central Limit Theorem, the distribution
of each empirical mean tends to a Gaussian. This motivates
the following (approximate) model:

xij ∼ N (γij , σ
2
ij) , (16)

whereσ2
ij is sample variance of thenij measurements asso-

ciated with empirical meanxij , divided bynij , andN (γ, σ2)
denotes the Gaussian density with meanγ and varianceσ2.
The measurements for different pairs of receivers are also
independent.

Although model (16) is just an approximation of the true
underlying statistics ofxij it allows us to cope with practical
modeling difficulties in a relatively easy way. Note that we are
in the scenario described in Section III:

hij(xij , σij |γij) = −
(xij − γij)

2

2σ2
ij

+ Cij , (17)

whereCij is a normalizing constant. We can then apply the
algorithms developed before to estimate the network topology.
Furthermore the model (17) has some desirable properties,
namely, it is closed under summation:

hij(xij , σ
2
ij |γ) + hkl(xkl, σ

2
kl|γ) =

−

((
xij

σ2

ij

+ xkl

σ2

kl

)
/

(
1

σ2

ij

+ 1
σ2

kl

)
− γ

)2

2
(

1
σ2

ij

+ 1
σ2

kl

)−1 + C .

This makes the computations arising from Lemma 1 very
simple.
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We performed some simple simulation experiments ac-
cording to the model above, to assess the performance of
the algorithms developed. In these simulations we randomly
generate tree topologies (clusterings), that we call the true
generative trees (clusterings). We compare the true and es-
timated clusterings using two criterions: (i) the percentage of
clusters of the true clustering that were correctly identified
in the clustering estimate; and (ii) the percentage of clusters
of the estimate that are not present in the true underlying
clustering.

In the first set of simulations we randomly generated 1000
binary topologies with 10 leaves, where the link-level metric
values (i.e., γk−γf(k)) were generated randomly (independent
and identically distributed like1 + E, where E denotes a
standard exponential random variable). The varianceσij for
each pair of leaves was chosen uniformly in the range[1, 4].
We observed that in general the ALT algorithm and the
MCMC method (λ = 0, stopped after 2500 iterations) had
similar performances under this scenario. On average the ALT
algorithm identified 93.8% of the clusters in the true clustering
and failed to identify 6.2% of them. On the other hand
the MCMC method identified on average 92.2% of the true
clusters and failed to identify 4.1%. We experimented with dif-
ferent variance ranges, but the behavior of the two algorithms
exhibited the same trends. The MCMC approach yielded in
general a smaller number of misclassified clusters, although
the difference in performance between the two algorithms
was not very significant. In the second set of simulations
we considered also non-binary trees, obtained by randomly
pruning binary trees. In this case we used the penalized
approach in the MCMC algorithm, with a penalty parameter
λ chosen with the aid of the guidelines described above. The
number of correctly identified clusters was still comparable
between the two algorithms (93.1% for the ALT and 91.0%
for the MCMC), but, as expected, the number of misclassified
clusters was significantly higher for the ALT (19.2% opposed
to 11.3% for the MCMC). This indicates that the ALT is still
performing well, except that it is introducing more clusters
than necessary. In a third experiment we considered larger
binary topologies (100 objects), in this case the initial tree
estimate (obtained from the ALT algorithm) was generally the
tree with the largest likelihood visited by the MCMC method.

The above experiments indicate that, under the scenarios
considered, the ALT is a robust estimator, although it tendsto
overfit the data. It is possible to devise scenarios where the
ALT estimator fails, due to its greedy nature. We conducted
some simple simulations in order to contrast the character-
istics of the MCMC, the ALT, and a classic algorithm, the
unweighted pair-group average method (UPGMA) [10]. These
simulations are not an exhaustive performance comparison of
the algorithms, but are intended to indicate the benefits and
drawbacks of the various methods.

We consider a randomly chosen six receiver binary topol-
ogy, such that the link-level parametersγk − γf(k) are the
same for all links (γk − γf(k) = 1). For each pair of leaves
(i, j) ∈ S we generate 100 independent measurements with
variance100σ2

ij. In the first experiment we letσ2
ij = σ2/100

for all i 6= 1, andσ2
1j = α2σ2/100, whereσ2 = 25 andα > 1.

This corresponds to a practical networking scenario: sincethe
delay differences are measured at each receiver, we mimic the
case where measurementsx1i taken at receiver 1 (identified
with leaf 1) are less reliable than the measurements collected
elsewhere. For each value ofα we evaluate the three methods
on 1000 randomly generated trees.

In Figure 4(a) we plot the performance of the three methods
as a function of the standard deviation ratioα. As we can
observe, the MCMC and ALT performance are very similar,
and remain almost constant for the range ofα considered.
On the other hand, the performance of the UPGMA algorithm
degrades significantly asα increases. The reason for this is that
the metricsγ̂1j in the UPGMA are strongly affected by the
highly variable empirical meansx1j , for j ∈ R. In the case of
the ALT, those empirical means do not affect the performance
because the measurements are weighted according to their
variance. Hence, for high values ofα, the measurementsx1j

have little impact on the estimated tree.
In Figure 4(b) we plot the results of an experiment similar

to the previous one, but nowσ2
ij = σ2/100 for i 6= {1, 2}

and σ2
1j = σ2

2j = α2σ2. In this case we observe that the
performance of the three methods degrades asα increases.
The UPGMA algorithm exhibits the same trends as before,
degrading considerably asα increases, but we note also that
the ALT performance degrades considerably as compared to
that of the MCMC, although it is still much better than that of
the UPGMA. The reason for this is that the estimate ofγ12 has
a high variance, since bothσ2

12 and σ2
21 are large, for large

α. There is a higher probability of mispairing leaves 1 and
2, since there is a higher chance of choosing that particular
pair in the greedy decision step. Unlike the ALT, the MCMC
algorithm is able to account for the higher variance of those
measurements, with respect to all the other measurements,
consequently improving its performance.

We conducted Internet experiments that demonstrate the use
of the techniques described in a practical scenario. In this
case we had also access to a partial topology map of the
network, obtained using a tool (calledtraceroute) relying
on network device information. While in this case the topology
can be partially identified usingtraceroute, in many other
cases routers may not cooperate. The point of this particular
experiment is that we can use thetraceroute topology
as a “ground-truth” to verify that our method produces an
accurate topology. The detailed experimental setup can be
found in [27]. The measurements collected for each pair span
a wide range of values: The maximum empirical average
(3464µs) was observed for the measurements involving the
two machines in Portugal, which is not surprising since those
receivers share a common bottleneck link with small capacity.
The variability associated with the measurements taken at
those machines is also large, especially for the ones taken at
the I.S.T. machine (standard deviation as large as746µs, and
all larger than the standard deviation of measurements taken
at any other receiver). On the other hand, for other pairs of
receivers we observed empirical averages as low as307µs and
corresponding standard deviations as small as23.5µs.

In Figure 5 we depict the topology obtained using
traceroute and the topology obtained solely from end-
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(a)

(b)

Fig. 4. Simulation results contrasting the performance of the ALT, MCMC
and UPGMA algorithms: (a) Performance results consideringdifferent mea-
surement variance for one receiver, (b) Performance results considering
different measurement variance for two receivers.

to-end measurements, using the algorithms described in Sec-
tion V. Using the ALT algorithm we are always going to
obtain a binary tree, and thus some of the links might be
artifacts due to data “overfitting” (see [27] for details). In the
ALT solution we notice that three links have link-parameter
valuesγk − γf(k) one order of magnitude smaller than all the
other links (see Figure 5(b)). This suggests that the four nodes
inside the ellipse might be an artifact of the binary tree, and
possibly correspond to a single node in the logical topology.
Using the MPLT technique we obtain a simpler tree, with less
artifacts than the ALT tree, as depicted in Figure 5(c). Notice
that the MPLT is very close to thetraceroute topology,
but fails to detect the backbone connection between Texas and
Indianapolis. We know that the latter connection has a very
large bandwidth and the queuing effects on the constituent
links are too minor to influence measurements. The estimated
topologies also place an extra element shared between the Rice
computers. Although that element is not a router, hence it
is not shown in the topology estimate usingtraceroute,
it corresponds to a existing physical device. To the best of
our knowledge the detected element is a bandwidth limitation
device.

VII. F INAL REMARKS

In this paper we develop a new framework for hierarchical
clustering based on a generative dendritic cluster model. We
pursue a maximum likelihood approach and present two clus-
tering algorithms based on this framework. The ALT algorithm
has low complexity, and is an agglomerative hierarchical

(a)

(b)

(c)

Fig. 5. Comparison between thetraceroute topology and the esti-
mated topologies for the Internet experiment described in Section VI: (a)
The topology of the network used for Internet experiments, obtained using
traceroute. (b) Estimated topology using the ALT algorithm. The three
links inside the ellipse have link-parameter valuesγk − γf(k) one order of
magnitude smaller than all the other links. (c) MPLT obtained using MCMC
techniques.

clustering algorithm, hence greedy. The second algorithm
presented overcomes the problems of the greedy nature of
the ALT by performing a random (but informed) search on
the space of possible clusterings, using Markov Chain Monte
Carlo techniques, aiming to find the maximum likelihood
clustering tree.

For the case of underlying binary trees, consistency of ALT
and the maximum likelihood approach can be shown. In the
case of non-binary trees the maximum likelihood approach
tends to fit the data too closely, and does not convey the
description of the underlying model properly, having more
clusters than the underlying generating model. To overcome
those problems we propose a maximum penalized likelihood
approach that enforces the choice of simpler models whenever
the decrease in likelihood is small (as compared to complex
models). Both random search approaches benefit greatly from
a characterization of the maximum likelihood tree, given by
Theorem 1.

Although the MCMC approach is very appealing, the fact
that the number of trees in the forest grows combinatorially
with the number of objects to cluster renders the search of the
entire forest difficult. On the other hand the ALT algorithm
has low complexity, and appears to perform extremely well in
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a variety of scenarios, although overfitting the data. As seen
in Section V-C, in many cases the ALT is likely to be “close”
to the MLT, therefore, when the MCMC is started using the
ALT, it improves on the ALT simply by conducting a search
over the trees in the vicinity of the ALT. This is particularly
important when the number of input objects is large.

The framework presented here is very well suited to prob-
lems like the network topology identification, wherein the
generative model reflects the physical mechanisms involved.
Ongoing research is aimed at assessing the advantages and
disadvantages of the framework in more general settings, as
well as deriving performance guarantees under general models.

Acknowledgements: The authors would like to thank the
anonymous reviewers for the numerous helpful comments that
allowed us to greatly improve the presentation of the topic.

VIII. P ROOFS OF THERESULTS

For various proofs in this Section we need the following
lemma, characterizing the sum of strictly concave functions.

Lemma 2:Let i ∈ {1, . . . , n} andfi(·) be strictly concave
functions with (unique) maximizersxi ∈ R. Let g(x) =∑n

i=1 fi(x). Define xmax = maxi xi and xmin = mini xi.
The functiong(x) is strictly concave, has a unique maximizer
x̂ = arg maxx∈R g(x) and, if xmax 6= xmin thenxmin < x̂ <
xmax.

A. Proof of Lemma 1

The proof of (7) is elementary, and relies on reordering the
terms in (5). Begin by noting that

arg max
γ∈Γ(T )

log p(x|γ) =

arg max
γ∈Γ(T )

∑

v∈V \{S}

∑

i,j∈S:a(i,j)=v

hij(xij |γij) .

Each of the terms in the first summation corresponds to a
single metric value. Since there are no further restrictions on
those metric values we can maximize each term separately,
that is,

γ̂ij = γ̂v = arg max
γ∈R

∑

k,l∈S:a(k,l)=v

hkl(xkl|γ) ,

wherev = a(i, j). The uniqueness and existence of the above
solution follows directly from Lemma 2.

B. Proof of Theorem 1

The proof is done by construction. Given a treeT̃ satisfying
(8) we construct a treeT satisfying (9). Let T̃ be a tree
satisfying (8). Let

γ̃ = arg max
γ′∈G(T̃ )

log p(x|γ ′) and

γ̃unconst= arg max
γ′∈Γ(T̃ )

log p(x|γ ′) .

Note thatG(T̃ ) ⊆ Γ(T̃ ) and thatG(T̃ ) is an open set. By
concavity of the log-likelihood we have, forλ ∈ (0, 1),

log p(x|(1 − λ)γ̃ + λγ̃unconst)

> (1 − λ) log p(x|γ̃) + λ log p(x|γ̃unconst)

≥ log p(x|γ̃) .

Thus, if γ̃ ∈ G(T̃ ) then by choosing a smallλ > 0 we
get another point inG(T̃ ) yielding a higher log-likelihood,
a contradiction. Hencẽγ ∈ ∂G(T̃ ) where ∂ denotes the
boundary of a set.

The fact thatγ̃ ∈ ∂G(T̃ ) holds, indicates that there are
links l such that̃γl = γ̃f(l). Consider now the tree obtained
by collapsing all such links and keeping the value of the
remaining link-level parameters unchanged. Denote the tree
and corresponding metric values byT ′ and γ

′ respectively
(see Figure 6 (a)(b)).

Note that the parametersγ ′ satisfy the constrains (2), and
that (T ′, γ′) yields the same log-likelihood value as(T̃ , γ̃),
that islog p(x|γ̃, T̃ ) = log p(x|γ′, T ′). By our construction we
see thatγ ′ ∈ G(T ′). We conclude that

γ
′ = arg max

γ∈Γ(T ′)
log p(x|γ) . (18)

To see this suppose that (18) does not hold. Then, by the
same argument used in the beginning of the proof (but now
applied toT ′ instead ofT̃ ) we must haveγ′ ∈ ∂G(T ′), a
contradiction. Note that, according to Lemma 1,γ

′ satisfies
(7).

The rest of the proof ensues by constructing another tree
by adding links toT ′, such that (9) holds. Consider a node
k of T ′ such thatk has more than two descendants (such a
node must exist because we pruned at least one link fromT̃ ).
Define

gij(γ) =
∑

m∈S(i)

∑

n∈S(j)

hmn(xmn|γ) + hnm(xnm|γ)

andβij = argmaxγ∈R gij(γ) , with i, j ∈ c(k), i 6= j.
From Lemma 1 we know that

γ′
k = arg max

γ∈R

∑

i,j∈c(k), i6=j

gij(γ) .

Case 1: Suppose that not all the valuesβij are the
same. Then there exists a pair of nodeso, p ∈ c(k) such
that βop ≥ βij , for all i, j ∈ c(k), and from Lemma 2 we
conclude thatβop 6= γ′

k (sincemini,j βij < γ′
k < maxi,j βij ).

Using the chosen pair(o, p), we construct a new treeT (refer
to Figure 6(c)) adding an extra nodek∗ descending fromk and
with children{o, p}. Loosely speaking we are pulling the pair
of nodeso andp down, adding a new nodek∗. The parameter
values for this new tree, denoted byγ, are adjusted such that
γk∗ = γ′

k + δ, δ > 0. All the other metric values remain the
same. Note thatδ > 0, but small enough so that the tree(T, γ)
still satisfies the constraints (2).

The log-likelihood of(T, γ) is identical of the one from
(T̃ , γ̃), except for the term involvingγk∗ . Thus

log p(x|γ) − log p(x|γ′)

= gop(γ
∗
k) − gop(γ

′
k)

= gop(γ
′
k + δ) − gop(γ

′
k)

= gop((1 − λ)γ′
k + λβop) − gop(γ

′
k)

> (1 − λ)gop(γ
′
k) + λgop(βop) − gop(γ

′
k)

= λ(gop(βop) − gop(γ
′
k)) > 0 ,
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(a) (b) (c)

Fig. 6. Trees illustrating the proof of Theorem 1: (a) Original tree(T̃ , γ̃); (b) Collapsed tree(T ′, γ′); (c) Constructed tree(T, γ).

where we takeλ = δ/(βop − γ′
k). The last inequality follows

from uniqueness of the maximizer ofgop andβop 6= γ′
k.

In conclusion, forδ small enough, we havelog p(x|γ) >
log p(x|γ′), and hence

log p(x|γ) > log p(x|γ̃) . (19)

Case 2: In this case all the valuesβij , i, j ∈ c(k) are
the same. Thusγ′

k = βij for all i, j ∈ c(k). As in Case 1
we construct another treeT by adding an extra nodek∗

descending fromk, such that nodek∗ has childreno andp. The
parameter values for this new tree, denoted byγ, are adjusted
such thatγk∗ = γ′

k. All the other metric values remain the
same. From Lemma 1 we observe thatγ is the maximizer over
Γ(T ) of log p(x|γ). Hencelog p(x|γ, T ) = log p(x|γ̃, T̃ ).

Suppose that all nodes ofT ′ with more than two de-
scendants correspond to case 2. We could then add to
T ′ all the links we removed (when we constructedT ′

from T̃ ), and obtain the original treẽT , but in this case
max

γ′∈Γ(T̃ ) log p(x|γ′) = max
γ′∈G(T̃ )

log p(x|γ′), a con-

tradiction. Hence at least one node ofT ′ corresponds to case
1, and so (19) necessarily holds, proving the result. The second
part of the theorem follows fromRemark 1.

C. Proof of Proposition 2

The result is a consequence of the following lemma.
Lemma 3:Let Xρ be a collection of real random variables

converging in probability (whenρ → ∞) to constanta. Let
Yρ be another collection of random variables converging to
constantb, and a < b. Then for anyδ > 0 we have that
Pr(Xρ > Yρ) < δ for large enoughρ.

We observed before, in Proposition 1, that the relative
ordering of the metric values{γij} uniquely determines the
tree. Observing that our estimates of the metric values{γ̂ij}
converge in probability to the real metric values, one concludes
that the probability of the relative ordering of the estimated
and true metric values being different becomes smaller asρ
increases, and so the result follows.

D. Proof of Proposition 4

Let T be the initial state, withn(T ) internal links. If we
apply a sequence ofn(T ) death moves, each one removing
an internal link, we obtain a treeT ′′ with a single internal

node. Since each of the death moves has non-zero probability
we are able to reachT ′′ within n(T ) moves with non-zero
probability. The same reasoning applies if we consideredT ′

to be the initial state. In this case we would be able to reach
T ′′ with non-zero probability usingn(T ′) moves. Considering
now that for each death move there is a corresponding birth
move, we have a sequence of birth moves carrying treeT ′′ to
T ′. Thusq

(n(T )+n(T ′))
T,T ′ > 0 and hence the chain is irreducible.

E. Proof of Proposition 5

To prove this result it suffices to show that one can move
from any treeT ∈ F ′ to any other treeT ′ ∈ F ′ using the birth
and death moves. From this and the fact thatL′(x|T ) > 0
for all T ∈ F ′ it follows that the chain is irreducible. The
aperiodicity follows from the chain construction in (13).

The proof strategy is the same as use for Proposition 4, that
is, we begin by applying a sequence of death moves to get
from T to a tree with no internal links, and then a sequence
of birth moves taking us toT ′. We only need to check that
each transition tree is still inF ′. Without loss of generality
suppose thatT has at least one internal node. It suffices to
show that there is a death move that can be applied toT ,
yielding a tree that is still in the feasible forestF ′.

Let γ̂ be given by (7) for the treeT . Consider an internal
nodek such that all its descendants are leaf nodes. Further-
more choose nodek, such that it is the one with smallest metric
value γ̂k. When we apply a death move, “killing” the internal
link (f(k), k) we obtain another treẽT . It can be verified,
with the aid of Lemma 2, that this tree is still in the feasible
forest, that isT̃ ∈ F ′. The rest of the proof continues as the
proof of Proposition 4.

F. Proof of Proposition 6

The proof follows from a key observation: In Theorem 1,
the constructed tree(T, γ) has no more links than the initial
tree T̃ . We proceed by contradiction. Let̃T be a candidate
MPLT and suppose

max
γ′∈Γ(T̃ )

p(x|γ ′) exp(−λn(T̃ ))

> max
γ′∈G(T̃ )

p(x|γ′) exp(−λn(T̃ )) .
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Then, from Theorem 1, there exists another tree(T, γ),
γ ∈ G(T ), satisfying the monotonicity property, such that
p(x|γ) > max

γ′∈G(T̃ )
p(x|γ ′). Furthermoren(T̃ ) ≥ n(T ),

thus

p(x|γ) exp(−λn(T ))

> max
γ′∈G(T̃ )

p(x|γ′) exp(−λn(T̃ )) = Lλ(x|T̃ ) ,

and soT̃ cannot be the MPLT.
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