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Abstract. Today’s Internet is a massive, distributed network which contin-
ues to explode in size as e-commerce and related activities grow. The hetero-
geneous and largely unregulated structure of the Internet renders tasks such
as dynamic routing, optimized service provision, service level verification
and detection of anomalous/malicious behavior extremely challenging. The
problem is compounded by the fact that one cannot rely on the cooperation
of individual servers and routers to aid in the collection of network traffic
measurements vital for these tasks. In many ways, network monitoring and
inference problems bear a strong resemblance to other “inverse problems”
in which key aspects of a system are not directly observable. Familiar sig-
nal processing or statistical problems such as tomographic image reconstruc-
tion and phylogenetic tree identification have interesting connections to those
arising in networking. This article introduces network tomography, a new
field which we believe will benefit greatly from the wealth of statistical the-
ory and algorithms. It focuses especially on recent developments in the field
including the application of pseudo-likelihood methods and tree estimation
formulations.

Key words and phrases: Network tomography, pseudo-likelihood, topology
identification, tree estimation.

1. INTRODUCTION

No network is an island, entire of itself; every net-
work is a piece of an internetwork, a part of the main
(with apologies to John Donne, Devotions XVII. Med-
itation). Although administrators of small-scale net-
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works can monitor local traffic conditions and iden-
tify congestion points and performance bottlenecks,
very few networks are completely isolated. The user-
perceived performance of a network thus depends
heavily on the performance of an internetwork, and
monitoring this internetwork is extremely challenging.
Diverse subnetwork ownership and the decentralized,
heterogeneous and unregulated nature of the extended
internetwork combine to render a coordinated mea-
surement framework infeasible. There is no real in-
centive for individual servers and routers to collect and
freely distribute vital network statistics such as traffic
rates, link delays and dropped packet rates. Collecting
all pertinent network statistics imposes an impractica-
ble overhead expense in terms of added computational,
communication, hardware and maintenance require-
ments. Even when data collection is possible, network
owners generally regard the statistics as highly confi-
dential. Finally, the task of relaying measurements to
the locations where decisions are made consumes ex-
orbitant bandwidth and presents scheduling and coor-
dination nightmares.
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Despite this state of affairs, accurate, timely and
localized estimates of network performance charac-
teristics are vital ingredients in efficient network op-
eration. With performance estimates in hand, more
sophisticated and ambitious traffic control protocols
and dynamic routing algorithms can be designed.
Quality-of-service guarantees can be provided if avail-
able bandwidth can be gauged; the resulting service-
level agreements can be verified. Detecting anomalous
or malicious behavior becomes a more achievable task.

Usually we cannot directly measure the aspects of
the system that we need to make informed decisions.
However, we can frequently make useful measure-
ments that do not require special cooperation from in-
ternal network devices and do not inordinately impact
network load. Sophisticated methods of active network
probing or passive traffic monitoring can generate
network statistics that indirectly relate to the perfor-
mance measures we require. Subsequently, we can
apply inference techniques, derived in the context of
other statistical inverse problems, to extract the hidden
information of interest.

This article surveys the field of inferential net-
work monitoring or network tomography, highlight-
ing challenges and open problems, and identifying key
issues that must be addressed. It builds upon the sig-
nal processing survey paper by Coates, Hero, Nowak
and Yu (2002b) and focuses on recent developments
in the field. The task of inferential network monitor-
ing demands the estimation of a potentially very large
number of spatially distributed parameters. To suc-
cessfully address such large-scale estimation tasks,
researchers adopt models that are as simple as possi-
ble but do not introduce significant estimation error.
Such models are not suitable for intricate analysis of
network queuing dynamics and fine time-scale traf-
fic behavior, but they are often sufficient for infer-
ence of performance characteristics. The approach
shifts the focus from detailed queuing analysis and
traffic modeling (Kelly, Zachary and Ziedins, 1996;
Chao, Miyazawa and Pinedo, 1999) to careful design
of measurement techniques and large-scale inference
strategies.

Measurement may be passive (monitoring traffic
flows and sampling extant traffic) or active (gener-
ating probe traffic). In either case, statistical models
should be developed for the measurement process, and
the temporal and spatial dependence of measurements
should be assessed. These are active areas of research
in network tomography that we do not directly address

in this paper (see Section 5 for a summary of future di-
rections). If existing traffic is being used to sample the
state of the network, care must be taken that the tem-
poral and spatial structure of the traffic process does
not bias the sample. If probes are used, then the act
of measurement must not significantly distort the net-
work state. Design of the measurement methodology
must take into account the limitations of the network.
As an example, the clock synchronization required for
measurement of one-way packet delay is extremely dif-
ficult.

Once measurement has been accomplished, statis-
tical inference techniques can be applied to determine
performance attributes that cannot be directly observed.
When attempting to infer a network performance mea-
sure, measurement methodology and statistical infer-
ence strategy must be considered jointly. In work thus
far in this area, a broad array of statistical techniques
has been employed: complexity-reducing hierarchical
statistical models; moment- and likelihood-based esti-
mation; expectation–maximization and Markov chain
Monte Carlo algorithms. However, the field is still in
the embryonic phase, and we believe that it can benefit
greatly from the wealth of extant statistical theory and
algorithms.

In this article, we focus exclusively on inferential
network monitoring techniques that require minimal
cooperation from network elements that cannot be
directly controlled. Numerous tools exist for active
and passive measurement of networks (see http://www.
caida.org/tools for a survey). The tools measure and
report internetwork attributes such as bandwidth, con-
nectivity and delay, but they do not attempt to use
the recorded information to infer any performance at-
tributes that have not been directly measured. The ma-
jority of the tools depend on accurate reporting by all
network elements traversed during measurement.

The article commences by reviewing the area of
internetwork inference and tomography, and provides
a simple, generalized formulation of the network to-
mography problem. In Section 3 we describe a pseudo-
likelihood approach to network tomography that ad-
dresses some of the scalability limitations of existing
techniques. We consider the problem of determining
the connectivity structure or topology of a network and
relate this task to the problem of hierarchical cluster-
ing. We introduce new likelihood-based hierarchical
clustering methods and results for identifying network
topology. Finally, we identify open problems and pro-
vide our vision of future challenges.
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2. NETWORK TOMOGRAPHY

2.1 Network Tomography Basics

Large-scale network inference problems can be clas-
sified according to the type of data acquisition and
the performance parameters of interest. To discuss
these distinctions, we require some basic definitions.
Consider the network depicted in Figure 1. Each node
represents a computer terminal, router or subnetwork
(consisting of multiple computers/routers). A connec-
tion between two nodes is called a path. Each path con-
sists of one or more links—direct connections with no
intermediate nodes. The links may be unidirectional or
bidirectional, depending on the level of abstraction and
the problem context. Each link can represent a chain of
physical links connected by intermediate routers. Mes-
sages are transmitted by sending packets of bits from a
source node to a destination node along a path which
generally passes through several other nodes.

Broadly speaking, large-scale network inference in-
volves estimating network performance parameters
based on traffic measurements at a limited subset
of the nodes. Vardi (1996) was one of the first re-
searchers to rigorously study this sort of problem
and he coined the term network tomography due to
the similarity between network inference and med-
ical tomography. Two forms of network tomography
have been addressed in the recent literature: (1) link-
level parameter estimation based on end-to-end, path-
level traffic measurements (http://gaia.cs.umass.edu/
minc; Cáceres, Duffield, Horowitz and Towsley, 1999;
Ratnasamy and McCanne, 1999; Coates and Nowak,
2000; Harfoush, Bestavros and Byers, 2000; Duffield,
Lo Presti, Paxson and Towsley, 2001; Shih and Hero,
2001; Ziotopolous, Hero and Wasserman, 2001; Lo
Presti, Duffield, Horowitz and Towsley, 2002; Tsang,
Coates and Nowak, 2003) and (2) sender–receiver
path-level traffic intensity estimation based on link-
level traffic measurements (Vanderbei and Iannone,

FIG. 1. An arbitrary virtual multicast tree with four receivers.

1994; Vardi, 1996; Tebaldi and West, 1998; Cao,
Davis, Vander Wiel and Yu, 2000a; Cao, Vander Wiel,
Yu and Zhu, 2000b; Liang and Yu, 2003b).

In link-level parameter estimation, the traffic mea-
surements typically consist of counts of packets trans-
mitted and/or received between source and destination
nodes or time delays between packet transmissions and
receptions. The goal is to estimate the loss rate or the
queuing delay on each link. The measured time delays
are due to both propagation delays and router process-
ing delays along the path. The path delay is the sum of
the delays on the links that comprise the path; the link
delay comprises both the propagation delay on that link
and the queuing delay at the routers that lie along that
link. A packet is dropped if it does not successfully
reach the input buffer of the destination node. Link
delays and occurrences of dropped packets are inher-
ently random. Random link delays can be caused by
router output buffer delays, router packet servicing de-
lays and propagation delay variability. Dropped pack-
ets on a link are usually due to overload of the finite
output buffer of one of the routers encountered when
traversing the link, but may also be caused by equip-
ment downtime due to maintenance or power failures.
Random link delays and packet losses become particu-
larly substantial when there is a large amount of cross-
traffic competing for service by routers along a path.

In path-level traffic intensity estimation, the measu-
rements consist of counts of packets that pass through
nodes in the network. In privately owned networks, the
collection of such measurements is relatively straight-
forward. Based on these measurements, the goal is to
estimate how much traffic originated from a specified
node and was destined for a specified receiver. The
combination of the traffic intensities of all these origin–
destination pairs forms the origin–destination traffic
matrix. In this problem not only are the node-level
measurements inherently random, but the parameter
to be estimated (the origin–destination traffic matrix)
must itself be treated not as a fixed parameter, but as
a random vector. Randomness arises from the traffic
generation itself, rather than perturbations or measure-
ment noise.

The inherent randomness in both link-level and path-
level measurements motivates the adoption of statis-
tical methodologies for large-scale network inference
and tomography. Many network tomography problems
can be roughly approximated by the (not necessarily
Gaussian) linear model

Yt = AXt + ε,(1)
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where Yt is a vector of measurements (e.g., packet
counts or end-to-end delays) recorded at a given time t

at a number of different measurement sites, A is a rout-
ing matrix, ε is a noise vector and Xt is a vector of
time-dependent packet parameters (e.g., mean delays,
logarithms of packet transmission probabilities over a
link or the random origin–destination traffic vector). In
some cases the vector Xt is a random vector with an un-
derlying parameterized distribution f (Xt |θ t ) (see the
example in Section 3.1), and it is the parameters θ t

that interest us. Typically, but not always, A is a bi-
nary matrix (the i, j th element is equal to 1 or 0) that
captures the topology of the network. In this paper, we
consider the problems of using the observations Yt to
estimate θ t (see Section 3.1), Xt (see Section 3.2) or A
(see Section 4).

What sets the large-scale network inference prob-
lem (1) apart from other network inference problems is
the potentially very large dimension of A which can
range from a half a dozen rows and columns for a
few packet parameters and a few measurement sites
in a small local area network, to thousands or tens of
thousands of rows and columns for a moderate num-
ber of parameters and measurements sites in the In-
ternet. The associated high-dimensional problems of
estimating Xt are specific examples of inverse prob-
lems. Inverse problems have a very extensive literature
(O’Sullivan, 1986). Solution methods for such inverse
problems depend on the nature of the noise ε and the A
matrix, and typically require iterative algorithms since
they cannot be solved directly. In general, A is not
full rank, so that identifiability concerns arise. Either
one must be content to resolve only linear combina-
tions of the parameters or one must employ statistical
means to introduce regularization and induce identi-
fiability. Both tactics are utilized in the examples in
later sections of the article. In most of the large-scale
Internet inference and tomography problems studied
to date, the components of the noise vector ε are
assumed to be approximately independent Gaussian,
Poisson, binomial or multinomial distributed. When
the noise is Gaussian distributed with covariance inde-
pendent of AXt , methods such as recursive linear least
squares can be implemented using conjugate gradi-
ent, Gauss–Seidel and other iterative equation solvers.
When the noise is modeled as Poisson, binomial or
multinomial distributed, more sophisticated statistical
methods, such as reweighted nonlinear least squares,
maximum likelihood via expectation–maximization
(EM) and maximum a posteriori via Markov chain
Monte Carlo (MCMC) algorithms, become necessary.

3. PSEUDO-LIKELIHOOD APPROACHES

In developing methods to perform network tomog-
raphy, there is a trade-off between statistical effi-
ciency (accuracy) and computational overhead. In the
past, researchers have addressed the extreme compu-
tational burden posed by some of the tomographic
problems, developing suboptimal but lightweight al-
gorithms, including a fast recursive algorithm for link
delay distribution inference in a multicast framework
(Lo Presti et al., 2002) and a method-of-moments ap-
proach for origin–destination matrix inference (Vardi,
1996). More accurate but computationally burden-
some approaches have also been explored, includ-
ing maximum-likelihood methods (Coates and Nowak,
2000; Tsang, Coates and Nowak, 2003; Cao et al.,
2002a), but in general they are too intensive compu-
tationally for any network of reasonable scale.

More recently, we proposed a unified pseudo-likeli-
hood approach (Liang and Yu, 2003a, b) that eases
the computational burden but maintains good statis-
tical efficiency. The idea of modifying likelihood is
not new, and many modified likelihood models have
been proposed, for example, pseudo-likelihood for
Markov random fields by Besag (1974, 1975), par-
tial likelihood for hazards regression by Cox (1975)
and quasi-maximum likelihood for finance models
by White (1994). In this section, we decribe the
pseudo-likelihood approach. We explore two concrete
examples: (1) internal link delay distribution infer-
ence through multicast end-to-end measurements and
(2) origin–destination (OD) matrix inference through
link traffic counts (the OD matrix specifies the volume
of traffic between a source and a destination).

The network tomography model we consider in this
section is a special case of (1), in which the error
term ε is omitted for further simplification. Hence the
model can be rewritten as

Y = AX,(2)

where X = (X1, . . . ,XJ )′ is a J -dimensional vec-
tor of network dynamic parameters (e.g., link de-
lay, traffic flow counts at a particular time interval),
Y = (Y1, . . . , YI )

′ is an I -dimensional vector of mea-
surements and A is an I × J routing matrix.

As mentioned before, A is not full rank in a general
network tomography scenario, where typically I � J ;
hence, constraints have to be introduced to ensure the
identifiability of the model. A key assumption is that all
components of X are independent of each other. Such
an assumption does not hold strictly in a real network
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due to the temporal and spatial correlations between
network traffic, but it is a good first-step approxima-
tion. Furthermore, we assume that

Xj ∼ fj (θj ), j = 1, . . . , J,(3)

where fj is a density function and θj is its para-
meter. Then the parameter of the whole model is
θ = (θ1, . . . , θJ ). In our first network tomography ex-
ample, that of link-level delay distribution estimation,
the goal is estimation of θ ; in the second example, it is
estimation of the actual Xt .

The main idea of the pseudo-likelihood approach is
to decompose the original model into a series of sim-
pler subproblems by selecting pairs of rows from the
routing matrix A and to form the pseudo-likelihood
function by multiplying the marginal likelihoods of
such subproblems. Let S denote the set of subproblems
by selecting all possible pairs of rows from the routing
matrix A: S = {s = (i1, i2) : 1 ≤ i1 < i2 ≤ I }. Then for
each subproblem s ∈ S, we have

Ys = AsXs,(4)

where Xs is the vector of network dynamic compo-
nents involved in the given subproblem s, As is the
corresponding subrouting matrix and Ys = (Yi1, Yi2)

′
is the observed measurement vector of s. Let θs be the
parameter of s and let ps(Ys; θs) be its marginal like-
lihood function. Usually subproblems are dependent,
but ignoring such dependencies, the pseudo-likelihood
function can be written as the product of marginal
likelihood functions of all subproblems, that is, given
observation y1, . . . , yT , the pseudo-log-likelihood
function is defined as

Lp(y1, . . . , yT ; θ) =
T∑

t=1

∑
s∈S

ls(ys
t ; θs),(5)

where ls(Ys; θs) = logps(Ys; θs) is the log-likelihood
function of subproblem s. Maximizing the pseudo-log-
likelihood function Lp gives the maximum-pseudo-
likelihood estimate (MPLE) of parameter θ . Maximiz-
ing the pseudo-likelihood is not an easy task because
Lp(y1, . . . , yT ; θ) is a summation of many functions.
Since the maximization of the pseudo-likelihood func-
tion is a typical missing value problem, a pseudo-EM
algorithm (a variant of the EM algorithm; Liang and
Yu, 2003a, b), is employed to maximize the function
Lp(y1, . . . , yT ; θ). Let ls(Xs; θs) be the log-likelihood
function of a subproblem s given the complete data Xs

and let θ(k) be the estimate of θ obtained in the kth step.
The objective function Q(θ, θ(k)) to be maximized in

the (k + 1)st step of the pseudo-EM algorithm is de-
fined as

Q
(
θ, θ(k)) = ∑

s∈S

T∑
t=1

Eθs(k)

(
ls(xs

t ; θs)|ys
t

)
,(6)

which is obtained by assuming the independence of
subproblems in the expectation step. The starting point
of the pseudo-EM algorithm can be arbitrary, but just as
in the EM algorithm, care needs to be taken to ensure
that the algorithm does not converge to a local maxi-
mum.

There are several points worth noting in constructing
the pseudo-likelihood function:

1. Selecting three or more rows each time may also be
reasonable to construct a pseudo-likelihood func-
tion, but there is a trade-off between the com-
putational complexity incurred and the estimation
efficiency achieved by taking more dependence
structures into account. The experience with the two
examples we discuss later shows that selecting two
rows each time gives satisfactory estimation results
while keeping the computational cost within a rea-
sonable range.

2. Currently all possible pairs are selected to construct
the pseudo-likelihood function, but a subset can be
judiciously chosen to reduce the computation. The
pseudo-likelihood is obtained by assuming all sub-
problems to be independent. Although this assump-
tion is frequently violated, we obtain, under mild
conditions, the consistency and asymptotic normal-
ity of maximum pseudo-likelihood estimates (Liang
and Yu, 2003a). Furthermore, the performances of
the full- and pseudo-likelihood approaches are com-
parable at least in the two examples below.

In summary, the pseudo-likelihood approach keeps
a good balance between the computational complexity
and the statistical efficiency of the parameter estima-
tion. Even though the basic idea of divide-and-conquer
is not new, it is very powerful when combined with
pseudo-likelihood for large network problems.

3.1 Example: Multicast Delay
Distribution Inference

The Multicast-Based Inference of Network-Internal
Characteristics (MINC) project (http://gaia.cs.umass.
edu/minc) pioneered the use of multicast probing for
network link-level queuing delay distribution estima-
tion. A similar approach through unicast end-to-end
measurements can be found in Tsang, Coates and
Nowak (2003). Consider a general multicast tree, as de-
picted in Figure 1. Each node is labeled with a number
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and we adopt the convention that link i connects node i

to its parental node. Each probing packet with a time
stamp sent from root node 0 will be received by all end
receivers 4–7. For any pair of receivers, each packet ex-
periences the same amount of delay over the common
path. For instance, copies of the same packet received
at receiver 4 and 5 experience the same amount of de-
lay on the common links 1 and 2. Measurements are
made at end receivers, so only the aggregated delays
over the paths from root to end receivers are observed.

Due to the aggregation of the measured delays,
model (2) can be naturally applied to the problem of
the multicast internal link (queuing) delay distribution
inference. For each probing packet, X is the vector of
unobserved delays over each link and Y is the vector of
observed path-level delays at each end receiver. Vector
A is an I × J routing matrix determined by the mul-
ticast spanning tree, where I is the number of end re-
ceivers and J is the number of internal links. For the
multicast tree depicted in Figure 1, (2) can be written
as 


Y1
Y2
Y3
Y4


 =




1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1







X1
X2
...

X7


 ,

where Y1, . . . , Y4 are the measured delays at end re-
ceivers 4, . . . ,7 and X1, . . . ,X7 are the delays over in-
ternal links ending at nodes 1, . . . ,7.

Each link has a certain amount of minimal de-
lay (the propagation delay on the link), which is
assumed to be known beforehand. After compen-
sating for the minimal delay of each link, a dis-
cretization scheme is imposed on link-level delay by
Lo Presti et al. (2002) such that Xj takes finite pos-
sible values {0, q,2q, . . . ,mq,∞}, where q is the
bin width and m is a constant. Therefore, each Xj

is a discrete random variable whose possible values
are {0, q,2q, . . . ,mq,∞} with respective probabilities
θj = (θj0, θj1, . . . , θjm, θj∞). When the delay is infi-
nite, it implies the packet is lost during the transmis-
sion.

As discussed by Lo Presti et al. (2002), the bin size q

is chosen beforehand and then the delay measurements
are discretized accordingly. The bin size and the max-
imum observed queuing delay provide an indication
of the required value of m. This process introduces a
quantization error such that the equation Y = AX does
not hold exactly: the error diminishes as q is reduced.
The choice of q thus represents a trade-off between
the accuracy of estimation and cost of computations,

because a smaller bin size entails higher dimension
of delay distributions. In experiments and simulations
(Lo Presti et al., 2002; Liang and Yu, 2003a) it has been
observed that the parameter estimation has similar ac-
curacy over a significant range of q (from very small
bin size to bin size of the same order as the mean link
delays). In practice, we choose a reasonable q based on
the spread of the delay measurements and prior knowl-
edge of network topology and network traffic. If the
resultant distributions appear too coarse, we repeat the
inference with a finer bin size.

To ensure identifiability, we consider only canonical
multicast trees (Lo Presti et al., 2002), defined as those
that satisfy

θj0 = P(Xj = 0) > 0, j = 1, . . . , J,

that is, each individual packet has a positive probability
to have zero delay over any internal link. The goal of
the multicast delay distribution inference is to estimate
the delay distribution parameters θj .

For the problem of multicast internal delay in-
ference, the maximum-likelihood method is usually
infeasible for networks of realistic size, because the
likelihood function involves finding all possible in-
ternal delay vectors X which can account for each
observed delay vector Y. We can show that the com-
putational complexity grows at a nonpolynomial rate.
Lo Presti et al.’s (2002) recursive algorithm is a compu-
tationally efficient method for estimating internal delay
distributions by solving a set of convolution equations.
Our pseudo-likelihood approach is motivated by the
decomposition of multicast spanning trees depicted in
Figure 2. A virtual two-leaf subtree is formed by con-
sidering only two receivers R1 and R3 in the origi-
nal multicast tree. The marginal likelihood function of
the virtual two-leaf subtree is tractable because of its
simple structure. For a multicast tree with I end re-
ceivers, there is a total of I (I − 1)/2 subtrees: differ-
ent subtrees contain delay distribution information on

FIG. 2. Pseudo-likelihood: subtree decomposition.
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different virtual links. Combining all subproblems by
ignoring their dependencies enables us to recover link
delay distributions. Since forming the subtree is equiv-
alent to selecting two rows from the routing matrix A,
the pseudo-likelihood method is applicable to the gen-
eral network tomography model (2).

Given multiple observed end-to-end multicast mea-
surements {y1, . . . , yT }, the pseudo-log-likelihood
function can be written as

Lp(y1, . . . , yT ; θ) = ∑
s∈S

T∑
t=1

logp(Ys = ys
t |θs),

where p(Ys = ys
t |θs) is the probability of the delay

measurement Ys of subtree s being ys
t when its link

delay distributions are θs . The pseudo-log-likelihood
function is maximized in an EM fashion with small
variations (Liang and Yu, 2003a).

We evaluate the performance of the pseudo-likeli-
hood methodology by model simulations carried out on
the four-leaf multicast tree depicted in Figure 1. Due
to the small size of the multicast tree, the maximum-
likelihood estimation (MLE) method can be imple-
mented, and so we can compare the performance of
maximum-pseudo-likelihood estimation (MPLE) with
that of MLE and also with that of the recursive al-
gorithm of Lo Presti et al. (2002). For each link the
bin size q = 1 and the number of bins m is set to
be 14. During each simulation 2000 i.i.d. multicast
delay measurements are generated, with each internal
link having an independent discrete delay distribution.
Figure 3 shows the delay distribution estimates of three
arbitrarily selected links along with their true delay
distributions in one such experiment. The plot shows
that both MPLE and MLE capture most of the link de-

FIG. 4. Link L1 error norm averaged over 30 simulations. The
solid line is the MPLE, the dashed line is the MLE and the dotted
line is the recursive algorithm of Lo Presti et al. (2002). For each
link the vertical bar shows the standard deviation of the L1 error
norm for the given link.

lay distributions and their performance is comparable,
whereas the recursive algorithm sometimes gives esti-
mates far from the truth.

A further comparison is illustrated in Figure 4, which
shows the L1 error norm of MLE and MPLE for each
link, as averaged over 30 independent simulations. For
each link the L1 error norm is simply the sum of the
absolute differences between probability estimates and
the true probabilities. As a common measure of the
performance of density estimates, the L1 error norm
enjoys several theoretical advantages as discussed by
Scott (1992). The plot shows that MLE and MPLE
have comparable estimation performance for tracking
link delay distributions, while the recursive algorithm
has much larger L1 errors on all links. Meanwhile,
we can see that MPLE has smaller standard deviation

FIG. 3. Delay distribution estimates of three arbitrarily selected internal links: link 1, link 2 and link 4. The solid step function is the true
distribution, the dashed line with circles is the MPLE, the dotted line with triangles is the MLE and the dashed line is the recursive estimate.
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on L1 error norm than MLE on all links, implying
that MPLE is more robust than MLE. This is because
the pseudo-likelihood function, which is a product
of less complex likelihood functions on subproblems,
has a nicer surface than the full-likelihood function
(Blackwell, 1973).

3.2 Example: Origin–Destination Traffic
Matrix Inference

Vardi (1996) was the first researcher to study the
problem of inferring the origin–destination (OD) traf-
fic matrix from link traffic counts at router interfaces
(his work originated in 1993, but appeared in 1996).
In this problem the observations are the link counts
at router interfaces and the OD traffic variables to be
estimated are linear aggregations of these link counts.
Assuming i.i.d. Poisson distributions for the OD traf-
fic byte counts on a general network topology, Vardi
demonstrated the identifiability of the Poisson model
and developed an EM algorithm to estimate Poisson
parameters in both deterministic and Markov rout-
ing schemes. To reduce the computational complexity
of the EM algorithm, he proposed a moment estima-
tion method and briefly discussed the normal model
as an approximation to the Poisson model. Follow-
up works treated the special case involving a single
set of link counts: Vanderbei and Iannone (1994) ap-
plied the EM algorithm and Tebaldi and West (1998)
presented a Bayesian perspective and a Markov chain
Monte Carlo implementation.

Cao et al. (2000a) used real data to revise the Poisson
model and to address the nonstationary aspect of the
problem. They represented link count measurements
as summations of various OD counts that are mod-
eled as independent random variables. Even though the
transmission control protocol (TCP), which governs
the flow of the majority of Internet traffic, generates
feedback that creates dependence, direct measurements
of OD traffic indicate that the dependence between

traffic in opposite directions is weak. This renders
the independence assumption a reasonable approxima-
tion. Time-varying traffic matrices estimated from a se-
quence of link counts are validated by comparing the
estimates with actual OD counts that were collected by
running Cisco’s NetFlow software on a small network
depicted in Figure 5b. Such direct point-to-point mea-
surements are often not available because they require
additional router CPU resources, can reduce packet
forwarding efficiency and involve a significant admin-
istrative burden when used on a large scale.

The network tomography model specified by (2) is
applicable to the OD matrix inference through link
traffic counts since the observed link traffic counts
are linear aggregations of the unobserved OD vari-
ables to be estimated. Here Y = (Y1, Y2, . . . , YI )

′ is
the vector of observed traffic byte counts measured on
each link interface during a given time interval and
X = (X1,X2, . . . ,XJ )′ is the corresponding vector of
unobserved true OD traffic byte counts at the same
time period. Vector X is called the OD traffic matrix,
even though it is arranged as a column vector for no-
tational convenience. Under a fixed routing scheme,
Y is determined uniquely by X through the I × J rout-
ing matrix A, in which I is the number of measured
incoming/outgoing unidirectional links and J is the
number of possible OD pairs. In contrast to multicast
delay inference, the ultimate goal of the OD traffic ma-
trix inference is to estimate the underlying random OD
traffic X given the observed link traffic Y. To achieve
this goal, we first estimate the mean of the traffic vec-
tor, as described below.

Each component of X is assumed to be independent
normally distributed and to satisfy the mean–variance
relationship Xj ∼ N(λj ,φλc

j ) independently, where
φ is a positive scalar applicable to all OD pairs and c

is a power constant. For the examples below, our ex-
ploratory data analysis has shown that the Gaussian

(a) (b) (c)

FIG. 5. (a) A router network at Lucent Technologies. (b) Network topology around router 1. (c) A two-router network around router 4 and
gateway.
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distribution does capture the characteristics of OD traf-
fic flows well. As a second-order approximation to
real network traffic, the mean–variance relationship is
critical in the Gaussian model. It is well-known that
real network traffic exhibits strong long range depen-
dence (Leland, Taqqu, Willinger and Wilson, 1994),
which is in general incompatible with the generation
of normal distributions. Despite this phenomenon, sev-
eral researchers have suggested that the power law
describes well the mean–variance relationship for a
large load of aggregated network traffic (Rolls, 2003;
Morris and Lin, 2000).

The assumption implies that

Y = AX ∼ N(Aλ,A�A′),(7)

where λ = (λ1, . . . , λJ ) and � = φ diag(λc
1, . . . , λ

c
J ),

so the parameter of the full model is θ = (φ,λ). The
mean–variance relationship is a key assumption to en-
sure the identifiability of the normal model. It implies
that an OD pair with large traffic byte counts tends
to have large variance with the same scale factor φ.
For the power constant c, both c = 1 and 2 work well
with the Lucent network data as shown by Cao et al.
(2000a, b). Because c = 1 or c = 2 give similar re-
sults, in this paper, we use c = 1 as in Cao et al.
(2000b), but note that the pseudo-likelihood method
can deal with c = 2 without any additional technical
difficulties. Then given observed link traffic count vec-
tors {y1, . . . , yT }, the pseudo-log-likelihood function
can be written as

Lp(λ,�) ∝ −1

2

∑
s∈S

T∑
t=1

{− log |As�sAs′|

+ (ys
t − Asλs)′(As�sAs′)−1

· (ys
t − Asλs)

}
,

where for a subproblem s, λs is its mean traffic vector,
�s is its covariance matrix and As is the subrouting
matrix. The maximization of the pseudo-log-likelihood
function is realized by the pseudo-EM algorithm as
well (Liang and Yu, 2003a).

Cao et al. (2000a) addressed the nonstationarity of
the data using a local likelihood model. For any given
time interval t , analysis is based on a likelihood func-
tion derived from the observations within a symmetric
window of size w around t (e.g., in the experiments
described below, w = 11 corresponds to observations
within about an hour in real time). Within this window,
an i.i.d. assumption is imposed (as a simplified and yet
practical way to treat the approximately stationary ob-
servations within the window). Maximum-likelihood

estimation is carried out for the parameter estimation
via a combination of the EM algorithm and a second-
order global optimization routine. The componentwise
conditional expectations of the OD traffic, given the
link traffic, the estimated parameters and the positivity
constraints on the OD traffic, are used as the initial es-
timates of the OD traffic. The linear equation y = Ax is
enforced via the iterative proportional fitting algorithm
(Cao et al., 2000a; Csiszár, 1975) to obtain the final es-
timates of the OD traffic. The positivity and the linear
constraints are very important final steps to get reli-
able estimates of the OD traffic, in addition to the im-
plicit regularization introduced by the i.i.d. statistical
model. To smooth the parameter estimates, a random
walk model also was applied by Cao et al. (2000a) to
the logarithm of the parameters λ and φ over the time
windows.

Even though the full-likelihood method described by
Cao et al. (2000a) uses all available information to es-
timate parameter values and the OD traffic vector X, it
does not computationally scale to networks with many
nodes. In general, if there are Ne edge nodes, the num-
ber of floating point operations needed to compute the
MLE is at least proportional to N5

e after exploiting
sparse matrix calculation in each iteration. Assuming
that the average number of links between an OD pair
is O(

√
Ne ), it can be shown that the overall computa-

tional complexity of each iteration of the pseudo-EM
algorithm is O(N3.5

e ). Compared with the complex-
ity of the full-likelihood O(N5

e ), the pseudo-likelihood
approach reduces the computational complexity con-
siderably. Moreover, the pseudo-likelihood approach
fits into the framework of the distributed computing,
which is beneficial to realistic applications.

First, to compare with results presented by Cao et al.
(2000a) we analyzed the same raw network OD traffic
data collected on February 22, 1999 for the Router 1
network depicted in Figure 5b. Figures 6 and 7 show
the estimated OD traffic from MPLE and MLE based
on the link traffic for the subnetwork along with the
validation OD traffic via NetFlow. Figure 6 gives the
full scale plot and Figure 7 is the zoomed-in scale
(20×). From the plot we can see that estimated OD
traffic from both MPLE and MLE agrees well with
the NetFlow measured OD traffic for large measure-
ments, but not so well for small measurements where
the Gaussian model is a poor approximation. From the
point of view of origin–destination traffic engineering,
it is adequate that the large traffic flows are inferred
accurately. For tasks such as planning and provision-
ing activities, OD traffic estimates can then be used as
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FIG. 6. Full scale OD traffic count estimates x̂t obtained from pseudo- and full-likelihood methods against the true OD traffic counts for
four node network around router 1.

inexpensive substitutes for direct measurements. The
performances of MPLE and MLE are comparable in
this case, but the computation of the MPLE is faster
than MLE. For this example, the computations are car-
ried out using R 1.5.0 (Ihaka and Gentleman, 1996)
on a 1-GHz laptop: it takes about 12 s to compute the
MPLE and about 49 s to compute the MLE in produc-
ing Figure 6.

Second, to assess the performance of MPLE more
thoroughly, simulations were carried out on some
larger networks through the network simulator ns-2
(http://www.isi.edu/nsnam/ns). The experimental net-
work topologies are (i) the two-router network depicted
in Figure 5c and (ii) the Lucent network illustrated in
Figure 5a, which comprises 21 end nodes and 27 links.
From the simulation results (plots not shown), we see
that both pseudo- and full-likelihood methods capture

the dynamics of the simulated OD traffic under the
zoomed-in scale. Table 1 summarizes the execution
time for both pseudo- and full-likelihood approaches
under the three different settings. From the table
we can see that the pseudo-likelihood approach speeds
up the computation without losing much estimation
performance, so it is more scalable to larger networks.

TABLE 1
Execution times of MPLE and MLE on router networks of

different sizes

Network Number of MPLE MLE
topology edge nodes time (s) time (s)

Figure 5b 4 12 49
Figure 5c 8 18 88
Figure 5a 21 151 2395
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FIG. 7. OD traffic count estimates x̂t obtained from pseudo- and full-likelihood methods against the true OD traffic counts for four node
network around router 1. The plot has been zoomed-in 20× to illustrate the detailed features.

4. TOPOLOGY IDENTIFICATION

In the previous section it was assumed that the
network topology was known; this knowledge is es-
sential for successful application of the techniques
described. When the topology is unknown, tools such
as traceroute (see http://www.caida.org/tools) can
be used in an attempt to identify it. However, these
tools rely on close cooperation from the network inter-
nal devices and are incapable of detecting certain types
of devices. The tools can thus determine the topology
only if the network is functioning properly and net-
work elements are prepared to cooperate and reveal
themselves. These conditions are often not met and are
becoming more uncommon as the Internet grows in
size and speed; there is little motivation for extremely
high-speed or heavily loaded switches to spend time
processing requests that are not central to the process

of communication. Also, the fear of malicious attacks
(such as denial of service attacks) forces network ad-
ministrators to block access to some diagnosis tools
on routers (such as ping or the ability to respond to
ICMP packets), preventing their use for legitimate pur-
poses.

It is therefore desirable to develop a method for esti-
mating topology that uses only measurements taken at
the network edge, obtained without cooperation from
internal devices. We consider a single source that is
communicating with multiple receivers (denote the set
of receiver nodes by R). The physical network topol-
ogy can be represented as a directed graph, where each
vertex represents a physical device (e.g., a router or a
switch) and the edges correspond to the connections
between those devices. In our approach we use only
end-to-end measurements and do not use any network
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FIG. 8. (a) Physical topology and (b) corresponding logical
topology. The darker unnumbered nodes are devices where no
branching of traffic occurs and therefore do not appear in the logi-
cal topology.

device information, which forces us to rely solely on
traffic and queueing characteristics. With this limited
knowledge, it is only possible to identify the so-called
logical topology (see Figure 8 for an illustration of
the distinction between logical and physical topolo-
gies). In the logical topology, each vertex represents
a physical network device where traffic branching oc-
curs, that is, where two or more source–destination
paths diverge. The set of vertices thus corresponds to
a subset of the traversed physical devices. An edge is
included between two vertices if traffic travels between
the corresponding network devices and does not pass
through any other devices in the included subset. Each
edge corresponds to a connection between two phys-
ical devices, but the connection may include several
network devices where no traffic branching occurs. We
assume that the routes from the sender to the receivers
are fixed during the measurement period, in which case
the topology is a tree-structured graph, as in Figure 8.
Every node has at least two children, apart from the
root node (which has one) and the leaf nodes (which
have none). If all internal nodes have exactly two chil-
dren, then the tree is called binary.

Ratnasamy and McCanne (1999) first demonstrated
that observations of correlations in end-to-end (multi-
cast) loss measurements could be used to reconstruct
the logical topology. Duffield, Horowitz and Lo Presti
(2001) and Duffield, Horowitz, Lo Presti and Towsley
(2002) then rigorously established the correctness of
the proposed algorithm and developed a more general
framework in which other measurements, such as de-
lay variance, could be used. This work was extended
to unicast scenarios by Bestavros, Byers and Harfoush
(2002), Coates et al. (2000a) and Castro, Coates and

Nowak (2004). In the following discussion, we focus
on the unicast measurement procedure we proposed
(Coates et al., 2002a) and the hierarchical clustering in-
terpretation of the topology identification problem ex-
pounded by Castro, Coates and Nowak (2004).

Recall equation (1). In the topology identification
problem the quantity of interest is A, the routing ma-
trix. Note that the entries of this matrix are only 0 or 1.
The measurements Yt are obtained through special
measurement techniques described below and the par-
tial ordering of Yt can be used to determine A. The
matrix estimation formulation above is not well suited
to the topology identification problem, so we formu-
late it below as a tree estimation exercise. One can also
regard the topology discovery problem as hierarchical
clustering. Within such a framework one wants to iden-
tify clusters of receivers that share certain properties.
In particular, we want to identify the clusters of re-
ceiver nodes whose paths from the source node are the
same up to a certain point.

Our goal is to identify the logical topology. With
each internal node in a tree we associate a met-
ric value γk . We consider only metrics that have a
monotonic property: An internal node has a smaller
metric value than any of its descendants (e.g., in Fig-
ure 8 γ5 > γ2). Examples of such metrics in network-
ing are the average delay or delay variance experienced
by a packet traveling from the source to node k or the
bandwidth-related metric we describe in Section 4.2.1.

Since we do not know the topology, we cannot es-
timate the metric values directly, but it is possible to
estimate them indirectly. Let a(i, j) denote the near-
est common ancestor of a given receiver pair i, j ∈ R

[e.g., a(4,9) = 2]. Define γij ≡ γa(i,j). The value γij

can be regarded as a characterization of the shared por-
tion of the paths from the root to i and j . The shared
path for a pair of nodes (i, j) is the path from the
root to node a(i, j). In the context of hierarchical clus-
tering, the γij can be interpreted as similarity values.
Note that there is an enforced symmetry in this model:
γij = γji . Knowledge of the pairwise metric values and
the monotonicity property suffices to completely iden-
tify the logical topology (Duffield et al., 2002).

For example, referring to Figure 8, the metric γ67
is greater than γi7 for all i ∈ R \ {6,7}, revealing that
nodes 6 and 7 have a common parent in the logi-
cal tree. This property can be exploited recursively
to devise a simple and effective bottom-up merging
algorithm that identifies the complete, logical topol-
ogy (Duffield et al., 2002; Castro, Coates and Nowak,
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2004). These same techniques are used in agglom-
erative hierarchical clustering methods (Ward, 1963;
Willet, 1988; Fasulo, 1999).

4.1 Likelihood Formulation and
Optimization Strategies

In general, we do not have access to the exact pair-
wise metric values and can only observe a noisy and
distorted version of them, usually obtained by actively
probing the network. If we have a statistical model that
relates the underlying (unknown) metric values and the
measurements, we can formulate the topology identi-
fication problem as a maximum-likelihood estimation
exercise.

For a given unknown tree T with a receiver set R,
let Xij be a random variable parameterized by γij for
any i, j ∈ R, i 
= j , and let γ = {γij }. Let p(x|γ ) de-
note the joint probability density function of those ran-
dom variables. A sample x ≡ {xij : i, j ∈ R, i 
= j}
of the random variables Xij is observed. These are
the pairwise measurements recorded through a probing
process such as the one described in Section 4.2.1. The
maximum-likelihood tree estimate is then given by

T ∗(x) = arg max
T ∈F

sup
γ∈G(T )

p(x|γ ),(8)

where F denotes the forest of all possible trees with
leaves R, and G(T ) is the set of all γ ’s that satisfy
the monotonicity property for the tree T . In many sit-
uations we are not interested in estimating γ ; hence,
we can regard γ as nuisance parameters. In that case,
(8) can be interpreted as a maximization of the profile
likelihood (Berger, Liseo and Wolpert, 1999)

L(x|T ) ≡ sup
γ∈G(T )

p(x|γ ).(9)

The solution of (8) is referred to as the maximum-
likelihood tree (MLT).

Under reasonable modeling assumptions the random
variables Xij are independent. Taking this into account
yields a useful factorization of the log-likelihood. As-
sume that the random variables Xij have densities
p(xij |γij ), i, j ∈ R, i 
= j , with respect to a common
dominating measure. Let fij (xij |γij ) = logp(xij |γij ).
The log-likelihood is then

logp(x|γ ) = ∑
i∈R

∑
j∈R\{i}

fij (xij |γij ).(10)

The optimization problem in (8) is quite formidable.
We are not aware of any method for computation of
the global maximum except by a brute force exami-
nation of each tree in the forest. Consider a tree with

N leaves. A very loose lower bound on the size of
the forest F is N !/2. For example, if N = 10, then
there are more than 1.8 × 106 trees in the forest. More-
over, the computation of the profile likelihood (9) is
nontrivial because it involves a constrained optimiza-
tion over G(T ). Castro, Coates and Nowak (2004)
showed that if the functions fij are concave, it is
not necessary to perform the constrained optimization,
since the maximum-likelihood metric value estimate
for the MLT is always in the interior of the set G(T ).
Hence one can just compute an unconstrained opti-
mization and subsequently check if the resulting max-
imizer lies in the set G(T ). However, even with this
simplification, it is still infeasible to search exhaus-
tively over all candidate trees. In the following sub-
sections we briefly describe two alternative algorithms
that return tree estimates that are an approximation to
the MLT.

4.1.1 Bottom-up agglomerative procedure. In a sce-
nario where one can determine the true pairwise sim-
ilarity metrics γ , it is possible to reconstruct the tree
topology using a simple agglomerative bottom-up pro-
cedure (Willet, 1988; Duffield et al., 2002). When
we only have access to the measurements x, convey-
ing indirect information about γ , we can still develop
a bottom-up agglomerative clustering algorithm to es-
timate the true topology. This method follows the same
conceptual framework as many hierarchical clustering
techniques, and proceeds by repeatedly applying four
steps:

1. Choose the pair of nodes with the highest similarity.
2. Merge the pair into a new node/cluster.
3. Update the similarities between the new node and

the former existing nodes.
4. Repeat the procedure until only one node is left.

The crucial step is the update of the similarity val-
ues, and in many hierarchical clustering algorithms the
update procedure is chosen via application-dependent
heuristics (Fasulo, 1999). In our model-based ap-
proach, which relates γ to x, the appropriate update
of similarities arises naturally from the likelihood for-
mulation and leads to the agglomerative likelihood tree
(ALT) algorithm (Castro, Coates and Nowak, 2004).

The algorithm commences by considering a set of
nodes S, initialized to the receiver set R, and forming
the estimates of the pairwise similarity metrics for each
pair of nodes in the set S, given by

γ̂ij = arg max
γ∈R

(
fij (xij |γ ) + fji(xji |γ )

)
,

(11)
i, j ∈ S, i 
= j.
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One expects the above estimated pairwise similarities
to be reasonably close to the true similarities γ . Con-
sider the pair of nodes such that γ̂ij is greatest, that is,

γ̂ij ≥ γ̂lm, ∀ l,m ∈ S.

We infer that i and j are the most similar nodes, im-
plying that they have a common parent k in the tree.

Assuming that our decision is correct, the tree struc-
ture and the likelihood impose some structure on the
true similarities, providing a logical way to perform the
merging of similarities (see Castro, Coates and Nowak,
2004, for details). The algorithm proceeds by replac-
ing nodes i and j with their parent k in S. For a given
node k, we denote by Rk the set of receivers which are
descendants of k in the tree. Thus, at the initial stage
of the algorithm Ri = {i}, and after the update step,
Rk = Ri ∪ Rj . We update the similarity estimates in S
according to

γ̂kl = γ̂lk ≡ arg max
γ∈R

∑
r∈Rk

frl(xrl|γ ) + flr (xlr |γ ),

(12)
where l ∈ S \ {k}.

These two steps, selecting the pair of nodes with max-
imum estimated similarity for merger and updating the
similarities, are repeated until there is a single node
in S. Castro, Coates and Nowak (2004) formalized the
concepts behind this algorithm and showed that if the
underlying tree is binary and the estimated pairwise
similarities are sufficiently close to the true similari-
ties, then the ALT algorithm is equivalent to the MLT
and identifies the true topology.

4.1.2 Markov chain Monte Carlo approach. De-
spite the simplicity of the ALT algorithm, it is a greedy
procedure based on local decisions that involve the es-
timated pairwise similarities. If an incorrect local de-
cision is made at some stage in the algorithm, then it
cannot be reversed. In the topology estimation prob-
lem the measurement process is generally distributed,
relying on clocks and counters at numerous network
sites. It is frequently the case that several of the mea-
surements are substantially more inaccurate than the
rest. The ALT algorithm compares pairwise similarity
estimates, each of which is formed from only a subset
of the available measurements and is thus vulnerable
to the effect of the local inaccuracies. Unlike the ALT,
the MLT estimator takes a global approach: the expres-
sion to be optimized in (8) involves a contribution from
all of the measurements, and identification of the MLT
requires a simultaneous consideration of all the pair-
wise similarities. The price to pay is that identification

of the MLT involves a search over the entire forest F .
In this section we propose a random search technique
that efficiently searches the forest of trees and, most
importantly, focuses on the likely regions of the forest.

Recall the profile likelihood defined in (9) and note
that the maximum likelihood tree is the tree that max-
imizes L(x|T ). For a given set of measurements x we
can regard the profile likelihood L(x|T ) as a discrete
distribution over the set of possible tree topologies F
(up to a normalizing factor). One way to search the
set F is to sample it according to this distribution.
The more likely trees are sampled more often than the
less likely trees, making the search more efficient. The
sampling can be implemented using the Metropolis–
Hastings algorithm (Coates et al., 2002a; Hastings,
1970). For this we need to construct a Markov chain
with state space F . We allow only certain transitions.
For a given state (a tree) si ∈ F we can move to
another state (tree) using “birth moves” and “death
moves” as illustrated in Figure 9. Details of the entire
procedure can be found in Castro, Coates and Nowak
(2004). The Metropolis–Hastings algorithm is a basic
sampling approach, which, despite its simplicity, re-
sults in improved performance compared to ALT; the
incorporation of more sophisticated sampling strate-
gies is an avenue for developing improved topology
identification procedures.

To achieve our (approximate) solution of (8), we
simulate the constructed chain and keep track of the
tree we visit that has the largest likelihood; the longer

FIG. 9. Illustration of the birth and death moves in the MCMC
search algorithm. The birth move selects a node with more than
two children, chooses two of these children and inserts an extra
node as the new parent of these children. The death move chooses
a node with two children and deletes that node.
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the chain is simulated, the higher the chance of visiting
the MLT at least once. Although theoretically the start-
ing point (initial state) of the chain is not important,
provided that the chain is simulated for long enough,
starting at a reasonable point improves the chance of
visiting the MLT in a reasonable simulation period.
Starting the chain simulation from the tree obtained us-
ing the ALT algorithm is a reasonable approach, since
this is a consistent estimator and so one expects the re-
sulting tree to be “close” (in terms of the number of
MCMC moves) to the actual MLT. This is the major
reason the simple Metropolis–Hastings sampling pro-
cedure works reasonably well. Although inefficiencies
can prevent it from visiting more than a small region
of the forest, it does visit much of the region near the
MLT early in its evolution and can thus “correct” local
errors in the ALT.

One drawback to the likelihood criterion is that it
places no penalty on the number of links in the tree. As
a consequence, trees with more links can have higher
likelihood values (since the extra degrees of freedom
they possess allow them to fit the data more closely).
This is an instance of the classic “overfitting” problem
associated with model estimation (Rissanen, 1989) and
can be remedied by applying regularization, that is, by
replacing the simple likelihood criterion with a penal-
ized likelihood criterion,

T̂λ = arg max
T ∈F

logL(x|T ) − λn(T ),(13)

where n(T ) is the number of links in the tree T and
λ ≥ 0 is a parameter, chosen by the user, to balance
the trade-off between fitting to the data and control-
ling the number of links in the tree. We can use an
MCMC method in a similar fashion as before to ap-
proximately find the solution of (13). Minimum de-
scription length principles (Rissanen, 1989) motivate
a penalty that is dependent on the size of the network
(in terms of the number of receivers). However, other
model selection techniques lead to choices of different
penalties (Robert and Casella, 1999).

4.2 Experimental Results

4.2.1 Probing techniques and modeling. There are
several possible choices for similarity metrics in the
topology identification problem; the only constraints
are that the metric obey the monotonicity property
and is measurable in a practical setting. It is possible
to devise similarity metrics that rely on packet losses
(e.g., average loss on a shared path). Although these

are appealing because they are very simple to mea-
sure, losses are relatively rare in a properly function-
ing network (generally less than 2% for an end-to-end
path), so these metrics have poor discrimination prop-
erties. Metrics that use delay/timing measurements of-
fer better discrimination (Duffield, Horowitz and Lo
Presti, 2001), but their estimation often requires clock
synchronization between various physical points in the
network, a rather difficult task (Pásztor and Veitch,
2002). In earlier work we proposed a topology iden-
tification method based on delay differences (Coates
et al., 2002a). The measurement technique overcomes
the clock synchronization issues without impairing the
good discrimination of delay-based metrics and hence
it is easily deployed in practice. The method relies on a
measurement scheme called sandwich probing, details
of which can be found in Coates et al. (2002a); here we
present a brief overview.

Each sandwich probe consists of three packets and
gives information about the shared path between two
receivers. Figure 10 illustrates the probing scheme. The
large packet is destined for node 2; the small packets
are destined for node 3. The black circles on the links
represent physical queues where no branching occurs.
The initial spacing between the small probes d is in-
creased along the shared path from nodes 0 to 1 be-
cause the second small probe p2 queues behind the
large packet (due to the bandwidth limitations of each
link). The measurement collected for each receiver pair
is the extra delay difference �d between the two small
packets. This extra delay is due to the queueing of the
second small packet behind the large one, for all links
in the shared portion of the path. The metric used for
each pair is the mean delay difference. In idealized net-
work conditions (Coates et al., 2002a), the contribution

FIG. 10. Example of sandwich probe measurement.
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from each link in the shared path to the mean delay dif-
ference is inversely proportional to its bandwidth and is
always positive, so the metric satisfies the monotonic-
ity property.

The observed mean delay differences are noisy ver-
sions of the underlying metrics, primarily because of
the influence of background traffic in the network.
Let xij be the sample mean of repeated delay differ-
ence measurements for pair i, j ∈ R. We assume that
the cross-traffic is stationary over the measurement in-
terval and the initial spacing of the two small pack-
ets d is large enough so that neither the large packet
nor the second small packet queues behind the first
small packet at any time. We send each probe far apart
in time, so we can assume that the outcomes of dif-
ferent measurements are independent. Under these and
other mild assumptions, the measurements are statisti-
cally independent and have finite variance; hence, ac-
cording to the central limit theorem, the distribution of
each empirical mean tends to a Gaussian. This moti-
vates the (approximate) model

xij ∼ N (γij , σ
2
ij ),(14)

where σ 2
ij is the sample variance of the measurements,

divided by the number of measurements xij is the sam-
ple mean of the measurements and N (γ, σ 2) denotes
the Gaussian density with mean γ and variance σ 2.
Notice that we are not assuming that the delay differ-
ences are normally distributed, but only their empirical
means. Under the above assumptions, as the number of
measurements increases, the model accuracy increases.
We also assume that the measurements for the differ-
ent receiver pairs are statistically independent, which
is a reasonable assumption due to generally weak spa-
tial correlation between traffic on different links.

4.2.2 Internet experiments. We have implemented a
software tool called nettomo that performs sandwich
probing measurements and estimates the topology of
a tree-structured network. We conducted Internet ex-
periments using several hosts in the United States and
abroad. The topology inferred from traceroute
is depicted in Figure 11a. Often the traceroute
tool cannot be used to determine the topology, but it
does work in this measurement scenario and thus pro-
vides a useful ground truth for validation (even here,
traceroute fails to detect one network element).
The source for the experiments was located at Rice
University. There are 10 receiver clients, 2 located
on different networks at Rice, 2 at separate hosts in
Portugal and 6 located at four other U.S. universities.

(a)

(b)

(c)

FIG. 11. (a) The topology of the network used for Internet ex-
periments obtained using traceroute. (b) Estimated topology
using the ALT algorithm. The three links inside the ellipse have
link-parameter values γk − γf (k) that are one order of magnitude
smaller than all the other links. (c) The estimated topology obtained
using the MCMC method with a penalized likelihood criterion.

The experiment was conducted for a period of 8 min,
during which a sandwich probe was sent to a ran-
domly chosen receiver pair once every 50 ms. With-
out any loss, the maximum number of probes available
is 8600. This corresponds to less than 200 probes per
pair; hence the traffic overhead on any link is very low.
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We applied the ALT algorithm to the measurements
collected and the result is depicted in Figure 11b. Since
the procedure is suited only for binary trees, it adds
some extra links with small link-level metric value (i.e.,
γk − γf (k) ≈ 0). The extra links are an artifact of our
model and are essentially overfitting the data. Using
the maximum penalized likelihood approach, we ob-
tain the result depicted in Figure 11c (see Coates et al.,
2002a, for details of the penalty selection procedure).
Notice that this is very close to the traceroute
topology, but it fails to detect the backbone connec-
tion between Texas and Indianapolis. We expect that
the latter connection is very high speed and that the
queuing effects on the constituent links are too minor
to influence measurements sufficiently for its detection.
The estimated topologies also place an extra shared el-
ement between the Rice computers. This element is not
a router and hence is not shown in the topology re-
turned by traceroute, but it corresponds to a real
physical device and branching point. To the best of our
knowledge, the detected element is a bandwidth limi-
tation device.

5. CONCLUSION AND FUTURE DIRECTIONS

This article has provided an overview of the area
of large-scale inference and tomography in commu-
nication networks. As is evident from the limited
scale of the simulations and experiments discussed
in this article, the field is emerging. Deploying mea-
surement/probing schemes and evaluating inference
algorithms for larger networks is the next key step.
Statistics will continue to play an important role in
this area and in this section we attempt to stimulate
the reader with an outline of some of the many open
issues. These issues can be divided into extensions of
the theory and potential networking application areas.

The spatiotemporally stationary and independent
traffic and network transport models that currently
dominate network tomography research have limi-
tations, especially in tomographic applications that
involve heavily loaded networks. Since one of the prin-
cipal applications of network tomography is to detect
heavily loaded links and subnets, relaxation of these
assumptions continues to be of great interest. Some
recent work on relaxing spatial dependence and tem-
poral independence has appeared in unicast (Shih and
Hero, 2001) and multicast (Cáceres et al., 1999) set-
tings. However, we are far from the point of being able
to implement flexible yet tractable models which si-
multaneously account for long time traffic dependence,

latency, dynamic random routing and spatial depen-
dence. As wireless links and ad hoc networks become
more prevalent, accounting for spatial dependence and
routing dynamics will become increasingly important.

Recently there have been some preliminary attempts
to deal with the time-varying, nonstationary nature of
network behavior. In addition to the estimation of time-
varying OD traffic matrices discussed in Section 3.2,
other researchers have adopted a dynamical systems
approach to handle nonstationary link-level tomogra-
phy problems (Coates and Nowak, 2002). Sequential
Monte Carlo inference techniques were employed by
Coates and Nowak (2002) to track time-varying link
delay distributions in nonstationary networks. One
common source of temporal variability in link-level
performance is the nonstationary characteristics of
cross-traffic.

There is also an accelerating trend toward network
security that will create a highly uncooperative en-
vironment for active probing—firewalls designed to
protect information may not honor requests for rout-
ing information, special packet handling (multicast,
TTL, etc.) and other network transport protocols re-
quired by many current probing techniques. This has
prompted investigations into more passive traffic mon-
itoring techniques, for example, based on sampling
TCP traffic streams (Padmanabhan, Qiu and Wang,
2002; Tsang, Coates and Nowak, 2001). Furthermore,
the ultimate goal of carrying out network tomography
on a massive scale poses a significant computational
challenge. Decentralized processing and data fusion
will probably play an important role in reducing both
the computational burden and the high communica-
tion overhead of centralized data collection from edge
nodes.

The majority of work reported to date has focused
on reconstruction of network parameters which may
be only indirectly related to the decision-making ob-
jectives of the end-user regarding the existence of
anomalous network conditions. An example of this
is bottleneck detection considered by Shih and Hero
(2001) and Ziotopolous, Hero and Wasserman (2001)
as an application of reconstructed delay or loss esti-
mation. Other important decision-oriented applications
may be detection of coordinated attacks on network re-
sources, network fault detection and verification of ser-
vices.

Finally, the impact of network monitoring, which is
the subject of this article, on network control and pro-
visioning could become the application area of most
practical importance. Admission control, flow control,
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service level verification, service discovery and effi-
cient routing could all benefit from up-to-date and
reliable information about link and router level perfor-
mances. The big question is, Can statistical methods be
developed which ensure accurate, robust and tractable
monitoring for the development and administration of
the Internet and future networks?
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