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Abstract

The problem of distributed consensus has recently receivied of attention, particularly in the framework of
ad hoc sensor networks. The average consensus problemdisttibuted signal processing context is addressed by
linear iterative algorithms, with asymptotic convergeteéhe consensus. The convergence of the average consensus
for an arbitrary weight matrix satisfying the convergenoeditions is unfortunately slow refraining the use of the
developed algorithms in applications. In this paper, weopse the use of extrapolation methods in order to accelerate
distributed linear iterations. We utilize a linear operaiwm predict the future node state values and then combine
the prediction with the current node state value in a conaskibn driving overall system state closer to the true
consensus value faster than the standard consensus taigmri® faster convergence is, hence, achieved by the
bypassing of redundant states. The proposed method ig Emshcomputationally effective. We focus on a special
case of the proposed framework and derive the optimal migargmeter. Noting that the optimal mixing parameter
requires knowledge about the eigenvalues of the arbitraiglt matrix, we present a bound on the optimal parameter
requiring only local information, and prove the validity thfe suboptimal solution in the practical cases by showing
that its performance is close—to—optimal and it is feasiblgractical scenarios. Finally, we provide simulation
results that demonstrate the validity and effectivenesthefproposed scheme. These results also indicate that in
general situation the consensus based on the proposedaahpsignificantly outperforms the optimum algorithm

based on weight matrix optimization relying on semidefimitegramming paradigm.
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. INTRODUCTION

In both wireless sensor and peer—to—peer networks, théngeigst in simple protocols for computing aggregate
statistics [1]-[4]. Distributed average consensus, heiscan important issue in sensor networks. There are several
simple methods for distributed average consensus. In #pempwe focus on a particular class of iterative algorithms
for average consensus: each node updates its state by addieghted sum of the local nodes and these weights
are algorithm parameters [5]-[7]. The state at each nodéaniteration consists of a single real number, which
overwrites the previous value. The algorithm is time—iretegentj.e., does not depend anThe algorithm computes
the average asymptotically [8].

Ad hoc networks of autonomous sensors and actuators aaetattr solutions for a broad range of applications.
Such networks find use in civilian and military applicatioimgcluding target tracking and surveillance for robot
navigation, source localization, weather forecastingjics monitoring and imaging. Distributed average conaens
in ad hoc networks, is an important issue in distributed agent and synchronization problems [9] and is also
a central topic for load balancing (with divisible tasks)parallel computers [10], [11]. More recently, it has
also found applications in distributed coordination of rif@@utonomous agents [12], [13] and distributed data
fusion in sensor networks [5], [6], [14]. In general, thewetks envisioned for many of these applications involve
large numbers of possibly randomly distributed inexpemsignsors. A major drawback of the developed average
consensus algorithms is the number of iterations takingpttverge to consensus often refraining the use of them

in practical scenarios.

A. Related Work

Much of the work dealing with consensus algorithm accelenabas been done by the authors of [5], [8], [15].
They showed that it is possible to formulate the problem gfrgsotic convergence time minimization as a convex
semidefinite one. The solution to this problem is then oletgiim the form of optimum weight matrix resulting from
a matrix optimization algorithm. The disadvantages of #pproach are twofold. Firstly, the approach is based on
convex optimization paradigm and the time or computatioesburces necessary to set up the network may be quite
substantial. Secondly, this approach requires conngcpeaittern to be known in advance and thus assumes that there
is a fusion center or some distributed mechanism that iseawhthe global network state. To combat the second
problem the use of iterative optimization utilizing subdjent algorithm is proposed in [15]. However, calculation
of subgradient still requires the knowledge of the eigetaecorresponding to the second largest eigenvalue of
the weight matrix. To make the algorithm distributed aushof [15] use decentralized orthogonal iterations [16]
for eigenvector calculation. The resulting algorithm igremely demanding in terms of time, computation, and

communication, because as a matter of fact it consists ofcvsensus procedures. Another approach to weight



matrix optimization is to set the neighbouring edge weigbtde equal to some constant. The optimization of
this constant with respect to minimizing the asymptoticvawgence time gives the value of the constant inversely
proportional to the sum of the largest and the second smaligenvalues of the Laplacian spectrum. This again
implies that connectivity pattern is known to some weighttni®aconstruction mechanism. The weight matrix
constructed using this mechanism is called the best canstaight matrix [8]. The suboptimality of the best

constant weight matrix stems from the fact that all the edg@lts are constrained to be the same.

B. Summary of Contributions

In this paper, we propose accelerating the convergencefatealistributed average consensus operating with an
arbitrary weight matrix satisfying the required convergeronditions [5], [7] by using a convex combination of
the values obtained by a linear predictor and consensw#idter Unlike the previous methods, we hence do not
burden the nodes with extra computational load since thdigiren is linear and its parameters can be calculated
offline. We present a general framework of accelerating tresensus and focusing on a special case to gain further
insight, we derive the optimal convex combination parameteen approached from the asymptotic convergence
rate perspective. Noting that the optimal parameter reguine knowledge of the second largest and the smallest
eigenvalues of the weight matrix, we derive suboptimal tmhs demanding much less information and easily
implementable in practical scenarios. We prove the validitthe proposed suboptimal approach by showing that it
is feasible to obtain the suboptimal parameter for the weiggitrix considered in practice and its close—to—optimal
performance. Finally, we report simulation results eviihgathe behavior and characteristics of the proposed @btim
and suboptimal approaches in varying scenarios. Theségesow that the generalized version of our algorithm
outperforms the optimum consensus algorithm based on weigtrix optimization when grid search for unknown

optimum value of mixing parameter is used.

C. Paper Organization

The remaining of this paper is organized as follows. Sectiomtroduces the distributed average consensus
problem and formulates the proposed framework to improeerttie of convergence. The proposed algorithm,
along with its properties and the optimal mixing parametera simplified case, the provided rate of convergence
improvement, a practical suboptimal solutions along whirt applicability to realistic sensor networks are detil
in Section Ill. We report the numerical examples testingpghgposed algorithms in Section IV. Finally, section V

concludes the paper.



[I. PROBLEM FORMULATION

This section first introduces elementary graph theory ¥odld by a brief review of the standard consensus
algorithm and formulates the proposed framework to the eosiss acceleration. Considered next is the proposed
approach to accelerate the consensus algorithm for anyhgrap

We define a graplt = (V, ) as 2—tuple, consisting of a setwith [V| = N vertices, where - | denotes the
cardinality, and a sef with |£| = M edges. We denote an edge between verticasd j as an unordered pair
(i,7) € €. The presence of an edge between two vertices indicateshiiyatcan establish bidirectional noise—free
communication with each other. We assume that transmissiomalways successful and that the topology is fixed.
We assume connected network topologies and the connggiiditern of the graph is given by thé x N adjacency

matrix ® = [®;;], where

1 if(s,5) €&
o, " "TEIEE ®
0 otherwise

Moreover, we denote the neighborhood of the nodiy, NV; = {j € V: (i,5) € £}. Also, the degree of the node
i is given byd; = |N;|.

We consider a set of nodes of a network (vertices of the gragdgh with an initial real valued scalaf(0),
wherei =1,2,...,N. Let 1 denote the vector of ones. The goal is to develop a distiibiiéeative algorithm that
computes at every node in the network, the vatu& (N)~11Tx(0). In this paper we focus on a particular class
of iterative algorithms for average consensus, widely ugeithe applications cited above. Each node updates its
state by adding a weighted sum of the local nodles,

wit+1) = Waai(t) + > Wija;(t) )
JEN;
fori=1,2,...,N andt =0,1,.... HereW;; is a weight associated with the edfye;j} and N is the total number
of nodes. These weights are algorithm parameters [5], [6].-A 0 (after all sensors have taken the measurement),
each node initializes its state ag0). At each following step, each node updates its state withesali combination
of its own state and the states at its neighbors. MoreovétingeV;; = 0 whenever®;; = 0, the distributed

iterative process reduces to the following recursion
x(t+1) = Wx(t) (3)

wherex(t) denotes the state vector. The weight matW, needs to satisfy the following conditions to ensure

asymptotic average consensus [7]:

Wi=11"W=1T p(W-J) <1 (4)



wherep(-) denotes the spectral radius of a matrix:
p(W) 2 max{|\;|:i=1,2,...,N}. (5)

Here {)\;})¥, denote the eigenvalues &V. In this paper, we assume that, in the modulus, the secogdstar
eigenvalue of the weight matrix i), i.e., A2) > |A\(v)|, where)(; denotes thé-th ranked eigenvalue. We make
this assumption to simplify the presentation, but the tescan be easily extended to avoid this simplification.
Note that the weight matrices satisfying the required cogerece conditions are proposed if the underlying graph
is connected and non—bipartiteg, Maximum—degree and Metropolis weights [5], [7]. Theseesobs also satisfy
the fact that the second largest eigenvalue, in the modislugy) [S]-[7], [15].

We modify the above consensus algorithm to increase itsesgance speed in the following way. State value

vectorx(t) is a possibly time—variant functio of the valuesxV (¢) andx"(¢):
x(t) = ge(xV (1), x" (t; k) (6)
wherex' (¢) is the local node state propagation similar to the standang@nsus procedure:
xV(t) = hy(x(t — 1)) ()

whereh; is some possibly time—variant and non-linear function. &wer,x’ (¢; k) is ak—step prediction of future

node states obtained frod/ previous local node states(t) = [z;(t — M + 1),...,z;(t — 1),z (1)]*:

x(t:k) = fil{xi(t) :i=1,2,...,N}) )

where f; is some predictor.

The rational behind the proposed system configurationradliby equations (6-8) is as follows: we note, by
observing the individual node trajectories produced bystamdard consensus algorithm [8], that the convergence
curves are smooth. Thus, it is reasonable to expect thatpbssible to predict future local node state from a
collection of previous node states. If the prediction isumate enough then it could be combined with the current
node state to drive overall system state closer to the trusertsus value faster than the standard consensus

algorithms. A faster convergence could, hence, be achibyedrtually bypassing the redundant states.

[1l. A CCELERATING DISTRIBUTED AVERAGE CONSENSUS FORAN ARBITRARY WEIGHT MATRIX

In the following, we detail the general proposed predictasdd distributed average consensus and to gain further
insight about the proposed algorithm focus on a special gadding computationally simple, linear and closed—

form attractive solution. Moreover for the considered sglecase, we present an optimization technique for the



mixing parameter when approached from a rate of convergaaspectivei.e., a closed—form solution maximizing

the rate of convergence.

A. Predictor Based Distributed Average Consensus

Computational resources available at the nodes are oftgnesand it is desirable that the algorithms designed for
distributed signal processing are computationally inespe. Linear functions are comparatively easy to impleimen
Moreover, the analysis of linear algorithms is often stn#figrward and expressions for performance metrics and
iteration outcomes can be derived in closed form. This aftekes algorithms based on linear approximations more
predictable, computationally efficient and attractiveustin the following we will consider linear matrix functions

N

of appropriate sizé;, £ W, g; 2 [1 — a,a]T, f; £ ©. With these in mind, equations (6-8), when node specific

versions are considered, take the following form:

wi(t) = axp (t) + (1 — @) (t) (92)
2V () = Wii(t — 1) + Y Wija(t — 1) (9b)
JEN;
w (t) = @Q(t)xz-(t) (9¢)
where®y, ) = [0k, (1), - - - ,Hxi(t)]T is curve parameter vector. We consider a convex combinatidhe predicted

and obtained statese., a € [0,1]. Convergence curve can be linearized in the vicinity of entrstate
€T; (t) = Hxi,(t)t + Hxi(t)- (20)

Parameterd, ) and ) of this linear approximation can be estimated from the ctibe of previous node

statesx;(¢) using standard least squares procedure [17]:

Xi(t) = At®xi(t) (11)
where A, is a M x 2 matrix ) _
t—M+1 1
A, 12)
t—1 1
t 1

Solution to the matrix equation (11) is known to have thedwlhg form:

O, = (ATA) AT x;(t) = Alxi(1) (13)



WhereAI is the Moore-Penrose pseudoinverseAgf Thusk-step prediction of local node state can be regarded
as a simple linear extrapolation:

Pk
z; (t.k) = O (nty (14)
with tf’k denoting the predictive time vector at tinie

t+k
£ = (15)

1

It should be noted that an equivalent extrapolation prosedan be formulated in terms of matx and predictive

time vectort™* having simplified time invariant form:

1 1
M+ k
A2 £Pk 2 (16)
M-1 1 1
M 1

Reorganizing equations (13,14) and taking into accounj ¢figes the following simple node state prediction
procedure:

0 = ATTtMF (17)

subsequently yielding
zF(t) = OTx;(¢). (18)

Remark 1:In the following, we note two important remarks regarding throposed approach for accelerating
the standard consensus algorithm for any given weight rmatri
(i) It can be seen from (17) that’(¢) is a linear combination of\/ previous local consensus values. Thus the
consensus acceleration mechanism outlined in equati@®¢d is fully local if it is possible to find optimum
value ofa in (9a) that does not require any global knowledge.

(i) Note also that® can be calculated off-line as it does not depend on the data.

B. One Step Predictor Based Distributed Average Consensus

General expressions describing the algorithm (9a—9c)gusialtistep predictor operating on multiple previous
node states are given in Appendix I. In this general casealparithm analysis is complicated, but to gain further
insight to the algorithm’s performance we analyze an ingodrcase when the algorithm (9) is based on one step

extrapolator of node state operating on two previous noatest.e., k = 1 and M = 2. In this case® = [—1,2]”



hencez?(t) can be expressed as follows:

2P (t) = 22V (1) — z(t — 1). (19)

2

We note that the gradient of state can be esUmateﬁaasst) £ 22V (t) — z;(t — 1). Thus (19) can be rewritten in
a more concise form:

2P () = 2V (1) + Vai(b). (20)

It is of interest to note that the one—step predictor henakaigs the current state in the gradient direction.

Substituting (19) into (9a) we get the following expressionx;(t):

zi(t) = a(2w;-W(t) —zi(t = 1))+ (1 - @)z)" (1) (21)
=(a+ 1Dz (t) — az;(t—1) (22)
(4 1) | Wimi(t — 1)+ > Wya(t — 1) | — ot — 1) (23)
JEN;
zi(t = 1)((1+ )Wy —a) + (L+a) Y Wizt —1). (24)
JEN;

This can be written in matrix form as:

x(t) = WiaJx(t — 1) (25)

where W{a] is the weight matrix (as a function ef) obtained through the proposed predictor based distidbute
average consensus algorithm:

Wia]l 2 (14 a)W —al (26)

The following proposition describes some properties ofwleéght matrix Wa]. Specifically, we show that if the
weight matrix W satisfies the conditions necessary for asymptotical cgevere, therW|[a| also guarantees the
asymptotical convergence to consensus under some mildticorsd

Proposition 1: Supposéw satisfies the necessary conditions for the convergenceedtémdard consensus algo-
rithm. Moreover, let\;) > Ag) > ... > A(y) denote the eigenvalues associated with eigenvecdigrss, ..., uy

and let)\;)[a] denote the ranked eigenvaluesWa].

() If \n) > 0, thenW|a] satisfies the required convergence conditions forallf Ay < 0, thenW/a] is a

doubly stochastic matrix. Moreoves( W — J) < 1 if

1+ )‘(N)

a < .
1_>\(N)

(27)

(i) The predictor based weight matri¥W [«] has the same eigenvectors and its eigenvalues are relatibe to



eigenvalues of the original matri¥V via the relationship:
)‘(i) [a] = (1+ Oé))\(i) - (28)

foranya andi=1,2,...,N.
Proof: See Appendix II. [ |
As follows from the result of Proposition 1, eigenvalues leé predictor based weight matrW [a] experience
left shift with respect to the eigenvalues of the originaligi® matrix W when « > 0. Moreover, it is easy to

show that ordering of the eigenvalues does not change dthmghift:
Ai) S Ag) = Aplad < Ag)la] (29)

for all i, j,a > 0, wherei and;j are associated with some eigenveciofsu; of W. The implications of Proposition

1 are as follows. First, the second largest and the smaligsbealues of matriXW|«| always correspond to the
second largest and the smallest eigenvalues of m&fixSecond, the values of the second largest and the smallest
eigenvalues of matriW o] are always less than the values of the second largest andniléest eigenvalues of
matrix W. Third, using the two previous facts and the definition ofctré radius (5) it is possible to formulate
the problem of the mixing parameter optimization in a simpkey. As follows from the considerations presented

in the following subsection, this optimization problem ngex and has a simple closed form solution.

C. Optimization of The Mixing Parameter

Recall thata is the mixing parameter that defines the influence of the ocof standard consensus iteration
and predictor in (9a) on the value of current node state inpttogposed accelerated consensus algorithm. In the
following, we consider optimization ofe when approached from the rate of convergence perspectpém@m
value of mixing parameter results in the maximum asymptotiovergence rate for algorithmic structure (9) and
M =2, k=1 case.

Spectral radiup(W|a] — J) defines the worst—case measure of asymptotic convergetecftaln fact, spectral
radius is directly related to the asymptotic convergente as defined in [8]:

. x(t) — Jx(0 1/t
r(W) 2 p(Wie =) = x(O)S;fo(O) s <||”X((0)) - JX((O))||”> ' (30)
Thus the minimization of the spectral radip§W|[a] — J) leads to the maximization of the convergence rate, or
equivalently, to the minimization of the asymptotic corgamce timer £ (log(1/p(W|a] — J)))~*. The following
theorem considers the optimumwhen the goal is to maximize the asymptotic convergence rate

Theorem 1:0ne step predictor based on two previous values of local rataee has the fastest asymptotic
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worst—case convergence rate if the value of mixing paranegfeals to the following optimum value:

Ay +Ae)

N e o
where \(;) denotes the eigenvalues of the weight maw
Proof: See Appendix Ill. |
Note that, as expected, optimal mixing parameiérsatisfies the following:
1+
a*<1—Nm+¥YAW) (32)
%ﬁ:g; (33)

where both the first and second lines follow from the fact that /\(2) < 1, respectively. We can thus conclude
that the optimal mixing parameter satisfies the requiredr@gence conditions for all cases.
Remark 2: After some algebraic manipulations, it is of interest toentitat

A) = Aw)

SRR CD R YN P 34
2= A2 —Aw) @] (4

Ay ]|

Note that the optimal mixing parameter provides just enosigift to the eigenvalues so that as we try to drive
A@2)la] smaller to obtain a faster convergence rate, optimal mixagameter stops at a specific point where

Ay [@]] = Ay [@] to avoid the|Ayy[a]| > A(2)a] case which would give a slower convergence rate.

D. Convergence Rate Analysis

To see to what extent the proposed algorithm (9) yields pexdince improvement over the conventional consen-
sus, we consider the ratio of the spectral radius of corredipg matrices that gives the lower bound on performance

improvement:
W — A

)
~ p(Wla] =J)  max{Ag o], A\ all}

v[a]

The following proposition considers the provided conveige rate improvement over the standard consensus
algorithm when optimal mixing parameter is utilized.

Proposition 2: In the optimal casd,e., whena = o*, performance improvement factor is given by

(2= A — Aw)
7o) = ST (36)
) (N)

Proof: In the optimal case, substituting' into (35) and taking into account the fact thaty)[a*]| = Ay [a”],

after some algebraic manipulations, yield the expressionfo*]. ]
Although (31) provides an expression for optimum mixingtésicresulting in fastest asymptotic convergence

rate, the calculation of this optimum value requires knalgke of the second and the last eigenvalues of mawix
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This in turn either requires knowledge ¥ or some centralized mechanism for calculation and digiobwf the
eigenvalues oW. In many practical situations such information may not bailable. Therefore it is of interest
to derive some suboptimum expressionsdothat would result in less performance gain, but require iclemably
less information at the node level.

Proposition 3: The predictor based distributed average consensus hagptignworst-case convergence rate

faster than that of conventional consensus if the value afngiparameter is in the following range:

0<a<a® (37)
Proof: The asymptotic worst-case convergence rate of algorithmig%aster than that of conventional
consensus algorithm if and only ifja] > 1 = p(W]a] —J) < p(W — J). We can rewrite this condition in

the following form:

Ay (1 —
@( ;:2?) @
Oé(l — >\(N)) — /\(N) <1 (38)
A@)
indicating that
Oé(/\(g) - 1) <0
o<l tAm (39)
1— /\(N)
Taking into account that\ ;) — 1) < 0 the strengthened version of (39) can be written as follows:
Ay +A@)
0<a< ——— (40)
2- A — A
Finally, noting that this expression is equald®d concludes the proof. ]

To ensure that the performance improvement factor is grélaée unity and remove the need of weight matrix
information, we proceed to derive bounds @h satisfying the range defined by the Proposition 3. The meato
constraints indicate that* needs to be lowerbounded, which, subsequently indicat#swie need to derive a
lowerbound for) ) + A(ny. The next proposition provides such a bound for this termeims of the trace of
weight matrix W.

Proposition 4: If the weight matrixW satisfies the convergence conditions and its eigenspedgarconvex

function of the eigenvalue index then
2(tr(W) — 1)

>
Aoyt AN 2 7

(41)

wheretr(-) denotes the trace of its argument.
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Proof: Recall that the sum of eigenvalues of a matrix is equal toréset

N N
YoAi= A = tr(W) (42)
=1 =1

Noting thatA(;) = 1 and rearranging the summation give

N
> A =tr(W) - L. (43)
=2

Noting the fact that the eigenspectrum is convex functiothefeigenvalue index, we can have:

(A@) + A (N = 1) al
> .
5 > ;—2 Ai (44)
Substituting (43) into (44) results in the desired bound. |

To avoid notational burden, let us denote the lowerbound\fey + A as following:

o 2tr(W) —1)

N1 (45)

§

Proposition 4, thus, provides an upperbound for mixing pe&tar « in terms of the trace of weight matriXv

satisfying the convergence and improvement factor caortti
a< & 2 A(8). (46)
S

If tr(W) is calculated in a centralized fashion then it is a far lesaglwated operation than computing eigenvalues
of the global weight matrix necessary to find optimum mixiraggmeter. Moreover, lower bound on the sum of the
second largest and the smallest eigenvalue of maWiprovided linearly depends on the average of the diagonal
terms of the weight matrix and thus can also be calculatetgustandard consensus algorithm. However, convexity
assumption made appears to be strong and unnecessary incases; Thus it is of interest to have a more general
and rigorous approach to this problem based on fundamerdgpkgies of eigenspectrum of a matrix.
Upperbound provided above still requires the knowledgéeftiagonal elements 3. However, in the following

we show that there exists an asymptotic upperbotgd¢) for « (satisfying the convergence and convergence
improvements factor conditions) that does not require dajl&nowledge and can be calculated off-line. This
guantity can be used in a fully local accelerated conserf@ube able to show this we need to make the following
assumptions:

() Sensors are randomly distributed in some a@feaccording to some known spatial distributipp,,(z,y).

(i) Two nodesi andj in the sensor network are considered to be connected if theeglaser to each other then
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some predefined connectivity radius

I{rﬁjgrg}zlif r%jgrg 47)
I{rij <r?}=0if Tiz,j > 72
where{r7, <rZ} is the indicator function and
7"1'27j = x?g + 1122] = (xi — ﬂfj)Q + (yi — Z/j)2 (48)

is the Euclidian distance between the nodes.
(i) The weight matrix W satisfying necessary and sufficient consensus convergasruditions is constructed

according to some rule of the form:

Wij = I{r?; <re}L(di,dj), i# ]
N . .
Wij=1- Zj:l,j# Wij, 1=

where L(d;, d;) is some function of the local connectivity degreksandd; of nodesi and j satisfying:

(49)

N

> L(diyd;) =1
=1 (50)

|L(di,dj)] <1
Given the assumptions outlined above, the following theomrovides an expression for an asymptotic upper
bound on the value of mixing parameterin terms of the expectation df{rzj <r2}L(d;,d;).
Theorem 2:If W is the N x N weight matrix constructed according 1(d;, d;) satisfying (50) and random

variables¢; defined by:

N
Gy = Y I{r}; <r2}L(d;,dy) (51)
J=1,j#i

are identically distributed with mean

|E{G~n}H = [E{C}] (52)
and covariance structure satisfying
2
Z W Ry_1+ m < 0 (53)
NeN+
where Ry andoy are defined as follows:
| NN
Ry £ e Z Z E{(G,n — E{GN ) (Gny — E{Gn 1)} (54)

i=1 j=1

on 2 B{(Gn — E{GN D} (55)
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then the lower bound on ) + Ay given by Proposition 4 almost surely converges to
Y . a.s. .
fo £ lim € % 2(1- E{C}) (56)
and defines an asymptotic upper boundcoas N — oo given by the following expression:

a < Aw) (57)

— 00

Proof: First, we note that by the construction of the weight maiVk (49) we can transform the expression

for £ (41) as follows:

2
£ = N 1(tr(VV) —1) (58)
N
2 2
= vz 59
N-1%& N -1 (59)
N N
2N 1 9
B NlNZ(l'Z'WiJ)Nl (60)
i=1 J=1,j%i
N N
2(N —1) 2N 1
- N-1 _N—1_Z Yo Il <riiL(didy) (61)
i=1 j=1,j#i
9 N
A v D 62
N—IZC (62)

where to obtain the last equality we have used the definiidi. (Note that/ {r? . < 2} is a random variable that

1,] — ' C

is Bernoulli distributed according to a pmf:

Pr{I{r; <ri}} =p

Pr{[{rij > r?}} =1-p

(63)

In (63) p is the probability that two nodes in the sensor network armeoted. This probability can be expressed

as follows:

p= / / / /S Pay(Tis Yi)Pay (25, y5)dasdy;da jdy; o

where the sef is defined over the areR and connectivity regiomij <rZ

S = {(zi, vi, 25, yj)| (v — ;)% + (vi — yj)? <725 24,0, 25,y; € D} (65)

The distribution of random variablé = L£(d;,d;) is less straightforward to characterize 46) is an arbitrary
function and it is beyond the scope of current paper. We regtiowever, that(-) is such that (52) and (53)

hold. It is straightforward to show that both mean and vamanf random variables; are bounded under our
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assumptions ot (d;, d;):

N
|[E{G}| = E{ Z [{7“1'2,3- < Tg}ﬁ(di,dj)} (66)
J=1,j#i
N
< sup Z L(d;,dj)| = 2. (67)
£ it
Moreover,
0% = E{(Gin — E{Gin D)} (68)
= E{¢’n} — E{(Gin}? (69)
< E{¢n} (70)
N N
=EQ Y I}y <eBLldindy) > H{rdy, < r2YL(di,di) (71)
J=1,j#i k=1,k#1
N N
< sup Z L(d;,d;)|sup Z L(d;, dg)| = 4. (72)
J=Llj#i k=1,k#i

Now, taking into account the results in (66) and (68) theoiwlhg centered square integrable random process

can be considered:

XiN =GN —E{¢Gn},i=1...N (73)

We note that if the correlation function of this random pregeatisfies ergodicity assumptions implied by (53), we

can invoke the Strong Law of Large Numbers stated by Pozny@kih Theorem 1 to show that

LN
N Z XiN = 0. (74)
=1

In its turn, this along with assumption (52) implies that
1 N
o O G S B{C) (75)

1=1

Thus combining the last result with (62) leads us to the Yeilhg conclusion:

9 N
goozjvl@m{%m;ci} (76)
o 2= B{¢) (77)

Finally, noting (46) concludes the proof. |
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Note the above result relies on the assumption ihat;, d;) satisfies the conditions discussed above. The
following remark shows that this assumption holds for thpudar max—degree weight design scheme [5], [7]. The
max—degree weights are very simple to compute and are wigdidstor distributed implementation. In particular,
each node needs no information to determine the weightssoadjacent edges. Furthermore, the nodes do not
need any global knowledge of the communication graph, on ¢we total number of nodes.

In the following, we demonstrate that the assumptions (5@) @3) hold in practice. Let(d;, d;) be defined

in accordance with maximum degree weight matrix constoacthechanism:

1
L(d;,d;) = — 78
In this case(; y takes the following form:
N
> I} <l (79)
J=1.5#
Taking the expectation of; y gives us:
1 & N-1
_ 2 2 _ -
BlGny =5 2 BU{r; <l =—5—p 0<p<1 (80)
J=1,j#i
Now, consider thalouble averagedtl8] correlation function (54) of the random process defime(i73)
| NN
Ry =75 D E{(G~ — E{Ga DGy — B{Gah}
=1 j=1
N N N
1 1 N -1 1 N-—-1
NgZZE{ N {rd, <r2} - ~v Pl lx > I{rf <) - NP
=1 j=1 k=1,k#i L=1,0#£]
1 L& 1
ZWZZE m I Zk<r2} Z I{T'JZ<T'2}
i=1 j=1 k=1,k ;éz {=1,0#7 (81)
N N
N -1 (N —1)2
— Nz P ( Z E{I{ﬁk <r}}+ Z E{I{ng',e <r}}|+ Tlﬁ
k=1,k#i (=1,0#]

N N N N
1 N —1)? N —1)?
“wX X YN B < <) -2t

i=1 j=1 k=1,k#i (=14+#j
| NN N (N - 1)
=i > > Bl <ol g, <ol -
i=1 j=1 k=1,k#i {=1,0#]
Let us look at the quadruple sum in (81). There are four ptessiases to analyze:
1) i=jandk =/

We note that the number of occurrences of this event is equal(tN — 1). Furthermore, the expectation



2)

3)

4)
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under the sum can be easily evaluated as follows:
E{I{r}, <Y’} =p*+p(1—p) =p (82)

i1=jandk £/

We note that the number of occurrences of this event is equal(tV — 1)(N — 2). It is not necessary to
evaluate the expectation directly. It is sufficient to ndtattthis expectation corresponds to the probability of
three arbitrary nodes in the network being connected. Tiabability is less than or equal to the probability

of two arbitrary nodes being connected. Thus we have an abviesult:
E{I{r}, <} {r}, <r2}} =p* + 1 (83)

wherep’ is bounded by the following

0<p' <p(l-p) (84)

1#£jandk =/
We note that the number of occurrences of this event is alsaléq N(N — 1)(N — 2). Furthermore, the

expectation in this case has the same meaning as (83)
E{I{r}, <r3{ri, <ri}} =p" +p (85)

1#£ jandk £/

We note that the number of occurrences of this event is equal(tV — 1)(N2 — 3N + 3). Furthermore, the
expectation is easy to evaluate using the independence shtidom variables involved. We note that in this
case the expectation corresponds to the probability of hdependent randomly selected pairs of sensors in
the network being connected:

E{I{r}, <r2}I{r}, <rl}} =p° (86)
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Combining the result of the above analysis with (81) givesfdllowing bound for the double averaged correlation
function:
1 N —1)?
(NN - D@ 4 a1 p) 42NV - DV -2 1) - D
(N-1)2, (N-1)2, N(N-1) 2N(N —1)(N —2)
=37 P - Pt pl-p)+ N i
p(l—p) 20 (87)
N2 + N
p(L—p)  2p(1—p)
STNT TN
2N +1
=p(l=p) 55—

Now we can use (87) and (68) to show that series (53) convehgesed,

Ry =

<

E: N Ry + <NQ (88)
NeN+
2 20N -1)+1 4
< Z N p(l—P)ﬁ‘Fm (89)
NeN+
2y/p(1—p)2N —1) 4
< Y N(N—l) + 2 (90)
NeN+
2\f\/ 1—p
NZ NN D v 2 (91)
eN+

it is obvious that series (91) converges, which implies tbevergence of (88). Thus taking into account (62) and
(79) the following result can be stated for the asymptotiweobound on\ ;) + Ay (56) in the situation when
max—degree weights are used:

o o 20-p) (92)

[
N—oo

Substituting (92) into (46) and rearranging the terms tesul the following asymptotic upper bound on
Mpy_ 1—=p
AEMPYy = & (93)
p
This result is due to the following fact. If we conS|dla{rr < r2} as noisy measurements bearing the information

regarding the true value gf in the estimator of the form

N

1 N N
—_@_}c E_j Z r; <ri}, (94)

=1,
then according to our analysis of double averaged corosldtinction, the number of independent measurements
grows at least?(v/N) times faster than the number of correlated ones. This fastires the ergodicity of the

random process defined lgy, i =1...N. Hence the value of estimatpr(94) almost surely converges to the
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true value ofp as NV goes toco. We note that in max—degree settingan be calculated as shown in Appendix IV.

IV. NUMERICAL EXAMPLES

First of all we would like to compare the convergence timesltsf the algorithm we propose with the algorithms
presented in [8]. Let us introduce the following notatiorDMnd MH are the standard consensus algorithms based
on maximum degree and Metropolis—Hastings weight matri@#3T and BC are optimum and the best constant
algorithms from [8]; MD-QV/, MD-SM, and MD-SAV/ denote the prposed algorithm using maximum degree
weight matrix and optimuna, suboptimuma chosen according to trace bound (46), and suboptimuamosen
according to asymptotic bound (46); MHA0 and MH-SV/ denote the proposed algorithm using Metropolis—
Hastings weight matrix, optimum and suboptimuna: chosen according to trace bound (46). In this notafiéris
an integer number showing how many past samples are used prekictor. The comparison results are presented
in Fig. 1. Here the algorithm (9) is simulated in scenaria tivas analyzed analytically in section Ill, that is, in
scenario when/ = 2 andk = 1. It is interesting to note in Fig. 1(a) that in the case whenalgorithm is used
with maximum degree weight matrix and optimumnit gives almost exactly the same result as the best constant
algorithm. It can also be seen in Fig. 1(a) that asymptotieeupound oy holds whenN is as low as20 for
the maximum degree weight matrW. The two curves corresponding to the bound based on the ofaseight
matrix (46) and represented by and asymptotic upper bound developed in Theorem 2, (57) gprésented by
are almost indistinguishable. At the same time, it is cleamf Fig. 1(b) that although our algorithm is extremely
simple and does not require any global optimization, it gants quite close to the optimum algorithm from [8] and
outperforms the best constant algorithm when it is used imjuction with Metropolis—Hastings weight matrix.
Simulation results presented later in this section show ¢basiderable further improvement is achievable using
our algorithm with M = 3. From Fig. 1 we conclude that our algorithm best performs rwhes used with
Metropolis—Hastings weight matrix. Thus we conduct all tlest of the experiments using our algorithm with
Metropolis—Hastings weight matrix only.

The plot of MSE for the proposed and standard consensusitalgsris shown in Fig. 2. We used the following
simulation parameters to generate this figure. Number alfstis 500, number of nodes is 50 in Fig. 2(a) and 25
in Fig. 2(b), connectivity radius is equal LQ/W, mean value at every node is 1, and standard deviation of
spatially white identically distributed Gaussian noiselisTo obtain the results for our algorithm whéd = 3
andk = 1 we used &.1 grid for the unknown parameter and evaluated MSE of our algorithm at every value
of a during each of the trials. After that we selected the lowedue of MSE that corresponded to the value of
« closest to the optimum one. The conclusions that can be mpd#serving Fig. 2 are twofold. First, Fig. 2
confirms the fact that performance of our algorithm with= 2 andk = 1 is very close to the optimum in terms

of step-wise MSE decay. Second, our algorithm with= 3 and % = 1 outperforms even the optimum algorithm
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[8] in terms of step-wise MSE decay. This result can be atted to the following fact. By properly combining
several past local samples of consensus state with thentwoasensus states of the neighbors it is possible to
incorporate into the next local consensus state estimate m@rmation regarding the true consensus value than
by using any proper combination of the current consensussst the neighbors only.

Finally, we would like to compare the performance of our alpon using different values o/ > 2. The results
of simulation are shown in Fig. 3. At this point we do not haxpressions for optimum in a more general case
when the number sampléd used by the predictor may be different frdinThus to generate this plot we used a
0.1 grid for the unknown parameter and evaluated MSE of our algorithm at every valuekpf\/ and «. After
that for all £ and M we selected the lowest value of MSE that was generated bylgloeitam usinga closest to
the optimum one. These results were averaged over 500 ffi@gs3 implies that in our setting where parameters
©® are given by formula (99) the best performance is obtainet! it= 3 is used. It can also be seen from this
figure that the performance improvement is quite substai@ia the other hand, the performance of the algorithm
degrades a8/ increases further. This can be explained by the fact thatedigt the current state we use linear line
parametrization for the predictor. As the number of samplahe predictor grows, linear parametrization becomes
less and less accurate rendering the predictor to be les¢easdeliable. Also it is noteworthy that fav/ = 3
the results are not sensitive to change in predictor &telm this case the difference in the performance of the

algorithm with differentk is negligible and can be attributed to the Monte—Carlo satioih error.

V. CONCLUDING REMARKS

APPENDIX |

GENERAL EXPRESSIONS FOR ARBITRARYM AND k

In this section we present the expressions for weighis (17) and current state(¢) as a function of algorithm
parameters and previous states for the case of arbilsagnd k. First, we note that we need an expression for the

pseudoinversé f. By the definition ofA in (16) we get:

11
ATA — 11 - 1 2 1| 142+ +M—-1+M 1+1+--+1+1
12 -~ M P42 4.+ (M =12+ M? 142+ +M—-1+M
M1
' (95)
ATA T(M+1)2—IM - M (96)

1
2
TM+1)P - SM+1)2+ M+ L J(M+1)2—3iM -

N[



21

Next we note that the inverse &’ A can be found easily in closed form:

6
(ATA)—I _ # -3 M+1 (97)
MM =1 | opr41 -3

Thus the expression for the pseudoinvessefollows immediately:

6

) 6 g 12 g . eM
A'I‘: ATA —IAT: M+ M+1 M+1 98
( ) M(M —-1) _ _ _ (98)
2M+1-3 2M+1—-6 --- 2M+1-3M

This results in the following expression for predictor whtig

(ﬁ—@ (M+k)+2M+1-3

9 (Ml—_il— )(M+k)+2M+1—6

e = A]LTtP,k - =
MM —1)

(99)

i (]Sj—ffl—?,) (M +k)+2M +1-3M |

Next, we present the general expression#%dt) as a function of algorithm parameters and previous statss. A
before, we assume that in general predictor weights aresepted by the vect® = [0, 0, ...,0,] given by
the expression in (99). In this case the value of the preditdimet is expressed as follows:

M
xP(t) = 0x(t — M + ) (100)

j=1
Recall that in our algorithnmx(t) is a mixture of predicted state®(¢) and the result of conventional consensus

xW(t) as in (9a)

x(t) = ax(t) + (1 — a)xV (t)
M—-2
= Z 0;x(t — M + j) + a(@pr—1x(t — 1) + 0px"V (1) + (1 — a)xV (t) (101)
o
=a Y Ox(t—M+j) +[afy I+ (1—a+afy)W]x(t—1)
j=1

The last expression on the right hand side of (101) can béyeasbgnized as a generalized version of (21). It can
be seen from this expression that in the case of generéhe output of our algorithm at timecannot be written
even in the generalized form of consensiis) = W (¢)x(t — 1), whereW (¢) is possibly time dependant weight
matrix. Thus the optimization of the value of the parametesing the expression (101) directly is impossible. This
happens because of the presence of the terms under the shis @gtiation. Each of the termsgt — M + j) has

expression similar to (101). The unfolding of the equatib®1() back in time leads to very complicated expression
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including the weighted sum of all the powersWf from time 0 and up to time. At this point in time we are not
aware of how to deal with this extremely complex expressmogtimize the value ofv directly or through some

suitable factorization.

APPENDIXII

ASYMPTOTIC CONVERGENCECONDITIONS OF THEPREDICTORBASED WEIGHT MATRIX

Note that to ensure asymptotical convergence, we need te phe followings:
Wiall =1, 1TW[a] =17, p(W[a] - J) < 1 (102)

whereJ = (N)~'11". Substitution of (26) into the left part of (102) results retfollowing:

Wia]l = (1+a)W —al)l (103)
— W1+ aW1 —all (104)
—14al—al=1. (105)

Proof for the right part of (102) is analogous and is thus tedit

We now consider the spectral radius of the predictor basedghtvenatrix. It is sufficient to show that

W[a]ui = ((1 + a)>\(z) - oz)uz- (106)
foranya andi = 1,2,..., N. Rearrangement of (26) gives the inverse relationship &etWV and W{a|:
W = (1 + o) H(W]a] + al) (107)

Thus it follows from the definition of an eigenvector and te&tionship betweeNV andW|«a] that for all e ands:

Wuz- == /\(Z)uz
(1+a) " (W[a] + ol)u; = Ajyu; (108)
Wia]u; + odu; = (14 o)A u; (109)

WlaJu; = (14 a)Ag) — a)u.
Hence,\(;)[a] = 1. Now, let us consider the spectral radiusWfla] — J defined asp(W(a] — J):
p(Wla] = J) £ max{A)lal, [Aw)le]l}- (110)

Note that fora > 0, the eigenvalues experience a left shift singgla] = a(A\;) —1) + A and(A; — 1) is always
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negative andv > 0. Thus to ensure that(W — J) < 1, we just need to make sure thaty[a] > —1. Hence,

1+ )‘(N)
1-— >\(N) '

aAdyy—1)—a>-1=a< (111)

Note that this is always satisfied fogy) > 0 sincea € [0, 1].

APPENDIXIII

OPTIMAL MIXING PARAMETER

In order to show that* is the optimal solution to the considered maximization peoh) we need to show that

a = o is the global minimizer ofp(W[a] — J). Hence we define the following optimization problem:

o = argmin p(Wla] — J) (112)
= argmin Ig?f((‘)‘(i) [a]]). (113)

However, this problem can be converted into a simpler one:
o = arg Inoin max (| Ay [, Ay @) (114)

since\(y)[a] is the smallest andy)« is the largest eigenvalue ¢W |[a] — J). Noting that

max{a, b} = 12— ; (a+b) (115)
we can further simplify (114)
a” = argmin [[A ) [o]| = Agyle]| + (A [] + Ag)la]) (116)
£ arg min Qfal]. (117)
Applying the result of the Proposition 1 reduces the objectunctionG(«) to the following:
Qla] = [[Amlell = A lall + (A lell + A [a]) (118)
= [T+ )y —al = (1T +a)Ag) — )| + [(1+ ) Awy —af + (1 + ) Ag) — @) (119)
Note that
A>ﬁ:(1+a)A—a>o,andA<1j%:»(1+a)A—a<o. (120)

Then fora < Awy/(1 — A(wy), after some algebra, we obtain

Q[a] = ‘Oé()\(N) — )\(2)) — )\(2) + )‘(N)‘ + Oz()\(g) + )‘(N) — 2) + )\(2) + )‘(N) (121)
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Note thatQ'[a] is discontinuous at = —1, given thata: < A(x)/(1 — Aw)). Consider the derivative of[a] for

a> —1.

09Q|a]
W‘o&—l =Aw) —A@) AN T A2 —2=2(Aw) —1) <0 (122)
since |\ y)| < 1. Although, we restricted ourselves to< « < 1, for completeness, we consider the case where

a< —1,

09[a]
Oa

Qlalac—1 = G(a)|ac—1 = =Av) + A@) T A +A2) —2=2(Ng — 1) <0 (123)

since|)\(2)| < 1. Thus the objective functio@[a] is strictly decreasing whem < A y)/(1—A(x)). In the following,
we show that, whem > Ay /(1 — A(xy)), the objective function is strictly decreasing when< o* anda > o,

which would indicate that thes = o* is the global optimum value. Consider the following:

Qla] = |2 = Avy — A2)) — Ay + A + (@ 4+ 1) (A@) — Awy) (124)
Note that
A@ +Aw)
a=a =—>"+ 7 125
2= — A (129)

is a discontinuity point ofQ'[a] given thata > A(x)/(1 — A(w)). Consider the derivative of[a] for a > a*:
Qlc]asar =2 = Ay — A@) + Ay — Ay = 2(1 = Aay) > 0 (126)
since|\(y)| < 1. On the other hand, ifv < o
Qlaflacar = =2+ An) + A@2) + Ap) — Aw) = 2(A\2) — 1) <0 (127)

since|Ag)| < 1.
To conclude the proof, we note th&@]«] is strictly decreasing when < o*, and Q[a] is strictly increasing

whena > o*, indicating thato* is the global minimum ofQ[«] and hencep(Wia] — J).

APPENDIX IV

PROBABILITY THAT TWO ARBITRARY NODES ARE CONNECTED

In this section we present the calculation of the probahiliat two randomly selected nodes in a sensor network
with connectivity radiusr, and sensors uniformly distributee,, ,,(x;,v;) = 1, z;,y; € [0,1] in a normalized

square are@ such thatD = {z,y|z,y € [0,1]} on the plane are connected. As was mentioned before, this
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probability can be evaluated using integral of the form

N ////S Paiy (xi’ yi)pxdvyj (xjﬂ yj)dwidyidxjdyj (128)

where the se8 is defined as follows

S = {(zi, yi,25,yj)| (v — ;)% + (i — yj)* <725z i, 24, y; € [0,1]} (129)

To facilitate calculation of the integral (128) given the sé integration limits (129) we can divide this problem

into two partsir. <1 and1 < r. < V2. Note also that random variablesandy can be introduced:
T=x— T, Y=Y — Yj- (130)
It is obvious that due to the fact that, ,, («;, y;) is uniform, the joint distribution ofc, y is triangular:

11— _ i _
foagy = | FLT DA @y L1 13
0 otherwise

Hence the integral in (128) can be reformulated into douttegral:

p= / / fay(@,y)dzdy. (132)
Vaity?i<r,, (zy)€[-1,1]

Due to the symmetry of the problem we can consider only a igesifuadrant during the calculation of (132). In

the caser. < 1 it reduces to the following:

N _—
p=4 / (1—2x) / y)dydr = 57"3 - grc + mr2. (133)
=0 y=0

On the other hand, wheh< r. < v/2 we can reformulate (132) as follows:

1
p=1—4 / / (1 — z)dzdy

y=/771 z=/riy (134)

1 / 1 1 1
= ——7‘4 + 7‘ w/ —-1- 2r + = \/ -1- 27‘ arcsin ( 1-— 7‘_2> —1—27"3 arcsin <r_> + 3
c Cc
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Fig. 1. Asymptotic convergence time versus the number oeadd the network
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Fig. 3. MSE versus the number of previous statéshat were used to predict current local state for 1,2, 3
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