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Abstract

The problem of distributed consensus has recently receiveda lot of attention, particularly in the framework of

ad hoc sensor networks. The average consensus problem in thedistributed signal processing context is addressed by

linear iterative algorithms, with asymptotic convergenceto the consensus. The convergence of the average consensus

for an arbitrary weight matrix satisfying the convergence conditions is unfortunately slow refraining the use of the

developed algorithms in applications. In this paper, we propose the use of extrapolation methods in order to accelerate

distributed linear iterations. We utilize a linear operator to predict the future node state values and then combine

the prediction with the current node state value in a convex fashion driving overall system state closer to the true

consensus value faster than the standard consensus algorithms. A faster convergence is, hence, achieved by the

bypassing of redundant states. The proposed method is linear and computationally effective. We focus on a special

case of the proposed framework and derive the optimal mixingparameter. Noting that the optimal mixing parameter

requires knowledge about the eigenvalues of the arbitrary weight matrix, we present a bound on the optimal parameter

requiring only local information, and prove the validity ofthe suboptimal solution in the practical cases by showing

that its performance is close–to–optimal and it is feasiblein practical scenarios. Finally, we provide simulation

results that demonstrate the validity and effectiveness ofthe proposed scheme. These results also indicate that in

general situation the consensus based on the proposed approach significantly outperforms the optimum algorithm

based on weight matrix optimization relying on semidefiniteprogramming paradigm.

Index Terms
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I. INTRODUCTION

In both wireless sensor and peer–to–peer networks, there isinterest in simple protocols for computing aggregate

statistics [1]–[4]. Distributed average consensus, hence, is an important issue in sensor networks. There are several

simple methods for distributed average consensus. In this paper we focus on a particular class of iterative algorithms

for average consensus: each node updates its state by addinga weighted sum of the local nodes and these weights

are algorithm parameters [5]–[7]. The state at each node in the iteration consists of a single real number, which

overwrites the previous value. The algorithm is time–independent,i.e., does not depend ont. The algorithm computes

the average asymptotically [8].

Ad hoc networks of autonomous sensors and actuators are attractive solutions for a broad range of applications.

Such networks find use in civilian and military applications, including target tracking and surveillance for robot

navigation, source localization, weather forecasting, medical monitoring and imaging. Distributed average consensus,

in ad hoc networks, is an important issue in distributed agreement and synchronization problems [9] and is also

a central topic for load balancing (with divisible tasks) inparallel computers [10], [11]. More recently, it has

also found applications in distributed coordination of mobile autonomous agents [12], [13] and distributed data

fusion in sensor networks [5], [6], [14]. In general, the networks envisioned for many of these applications involve

large numbers of possibly randomly distributed inexpensive sensors. A major drawback of the developed average

consensus algorithms is the number of iterations taking to converge to consensus often refraining the use of them

in practical scenarios.

A. Related Work

Much of the work dealing with consensus algorithm acceleration has been done by the authors of [5], [8], [15].

They showed that it is possible to formulate the problem of asymptotic convergence time minimization as a convex

semidefinite one. The solution to this problem is then obtained in the form of optimum weight matrix resulting from

a matrix optimization algorithm. The disadvantages of thisapproach are twofold. Firstly, the approach is based on

convex optimization paradigm and the time or computationalresources necessary to set up the network may be quite

substantial. Secondly, this approach requires connectivity pattern to be known in advance and thus assumes that there

is a fusion center or some distributed mechanism that is aware of the global network state. To combat the second

problem the use of iterative optimization utilizing subgradient algorithm is proposed in [15]. However, calculation

of subgradient still requires the knowledge of the eigenvector corresponding to the second largest eigenvalue of

the weight matrix. To make the algorithm distributed authors of [15] use decentralized orthogonal iterations [16]

for eigenvector calculation. The resulting algorithm is extremely demanding in terms of time, computation, and

communication, because as a matter of fact it consists of twoconsensus procedures. Another approach to weight
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matrix optimization is to set the neighbouring edge weightsto be equal to some constant. The optimization of

this constant with respect to minimizing the asymptotic convergence time gives the value of the constant inversely

proportional to the sum of the largest and the second smallest eigenvalues of the Laplacian spectrum. This again

implies that connectivity pattern is known to some weight matrix construction mechanism. The weight matrix

constructed using this mechanism is called the best constant weight matrix [8]. The suboptimality of the best

constant weight matrix stems from the fact that all the edge weights are constrained to be the same.

B. Summary of Contributions

In this paper, we propose accelerating the convergence rateof a distributed average consensus operating with an

arbitrary weight matrix satisfying the required convergence conditions [5], [7] by using a convex combination of

the values obtained by a linear predictor and consensus iteration. Unlike the previous methods, we hence do not

burden the nodes with extra computational load since the prediction is linear and its parameters can be calculated

offline. We present a general framework of accelerating the consensus and focusing on a special case to gain further

insight, we derive the optimal convex combination parameter when approached from the asymptotic convergence

rate perspective. Noting that the optimal parameter requires the knowledge of the second largest and the smallest

eigenvalues of the weight matrix, we derive suboptimal solutions demanding much less information and easily

implementable in practical scenarios. We prove the validity of the proposed suboptimal approach by showing that it

is feasible to obtain the suboptimal parameter for the weight matrix considered in practice and its close–to–optimal

performance. Finally, we report simulation results evaluating the behavior and characteristics of the proposed optimal

and suboptimal approaches in varying scenarios. These results show that the generalized version of our algorithm

outperforms the optimum consensus algorithm based on weight matrix optimization when grid search for unknown

optimum value of mixing parameter is used.

C. Paper Organization

The remaining of this paper is organized as follows. SectionII introduces the distributed average consensus

problem and formulates the proposed framework to improve the rate of convergence. The proposed algorithm,

along with its properties and the optimal mixing parameter for a simplified case, the provided rate of convergence

improvement, a practical suboptimal solutions along with their applicability to realistic sensor networks are detailed

in Section III. We report the numerical examples testing theproposed algorithms in Section IV. Finally, section V

concludes the paper.
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II. PROBLEM FORMULATION

This section first introduces elementary graph theory followed by a brief review of the standard consensus

algorithm and formulates the proposed framework to the consensus acceleration. Considered next is the proposed

approach to accelerate the consensus algorithm for any graph.

We define a graphG = (V, E) as 2–tuple, consisting of a setV with |V| = N vertices, where| · | denotes the

cardinality, and a setE with |E| = M edges. We denote an edge between verticesi and j as an unordered pair

(i, j) ∈ E . The presence of an edge between two vertices indicates thatthey can establish bidirectional noise–free

communication with each other. We assume that transmissions are always successful and that the topology is fixed.

We assume connected network topologies and the connectivity pattern of the graph is given by theN×N adjacency

matrix Φ = [Φij ], where

Φij =





1 if (i, j) ∈ E

0 otherwise
. (1)

Moreover, we denote the neighborhood of the nodei by, Ni , {j ∈ V : (i, j) ∈ E}. Also, the degree of the node

i is given bydi , |Ni|.

We consider a set of nodes of a network (vertices of the graph), each with an initial real valued scalarxi(0),

wherei = 1, 2, . . . , N . Let 1 denote the vector of ones. The goal is to develop a distributed iterative algorithm that

computes at every node in the network, the valuex , (N)−1
1

T
x(0). In this paper we focus on a particular class

of iterative algorithms for average consensus, widely usedin the applications cited above. Each node updates its

state by adding a weighted sum of the local nodes,i.e.,

xi(t + 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t) (2)

for i = 1, 2, . . . , N andt = 0, 1, . . .. HereWij is a weight associated with the edge{i, j} andN is the total number

of nodes. These weights are algorithm parameters [5], [6]. At t = 0 (after all sensors have taken the measurement),

each node initializes its state asxi(0). At each following step, each node updates its state with a linear combination

of its own state and the states at its neighbors. Moreover, setting Wij = 0 wheneverΦij = 0, the distributed

iterative process reduces to the following recursion

x(t + 1) = Wx(t) (3)

wherex(t) denotes the state vector. The weight matrix,W, needs to satisfy the following conditions to ensure

asymptotic average consensus [7]:

W1 = 1, 1
T
W = 1

T, ρ(W − J) < 1 (4)
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whereρ(·) denotes the spectral radius of a matrix:

ρ(W) , max
i

{|λi| : i = 1, 2, . . . , N}. (5)

Here {λi}N
i=1 denote the eigenvalues ofW. In this paper, we assume that, in the modulus, the second largest

eigenvalue of the weight matrix isλ(2), i.e., λ(2) > |λ(N)|, whereλ(i) denotes thei–th ranked eigenvalue. We make

this assumption to simplify the presentation, but the results can be easily extended to avoid this simplification.

Note that the weight matrices satisfying the required convergence conditions are proposed if the underlying graph

is connected and non–bipartite,e.g., Maximum–degree and Metropolis weights [5], [7]. These schemes also satisfy

the fact that the second largest eigenvalue, in the modulus,is λ(2) [5]–[7], [15].

We modify the above consensus algorithm to increase its convergence speed in the following way. State value

vectorx(t) is a possibly time–variant functiongt of the valuesxW(t) andx
P(t):

x(t) = gt(x
W(t),xP(t; k)) (6)

wherex
W(t) is the local node state propagation similar to the standard consensus procedure:

x
W(t) = ht(x(t − 1)) (7)

whereht is some possibly time–variant and non–linear function. Moreover,xP(t; k) is ak–step prediction of future

node states obtained fromM previous local node statesxi(t) = [xi(t − M + 1), . . . , xi(t − 1), xW
i (t)]T :

x
P(t; k) = ft({xi(t) : i = 1, 2, . . . , N}) (8)

whereft is some predictor.

The rational behind the proposed system configuration outlined by equations (6–8) is as follows: we note, by

observing the individual node trajectories produced by thestandard consensus algorithm [8], that the convergence

curves are smooth. Thus, it is reasonable to expect that it ispossible to predict future local node state from a

collection of previous node states. If the prediction is accurate enough then it could be combined with the current

node state to drive overall system state closer to the true consensus value faster than the standard consensus

algorithms. A faster convergence could, hence, be achievedby virtually bypassing the redundant states.

III. A CCELERATING DISTRIBUTED AVERAGE CONSENSUS FORAN ARBITRARY WEIGHT MATRIX

In the following, we detail the general proposed predictor based distributed average consensus and to gain further

insight about the proposed algorithm focus on a special caseyielding computationally simple, linear and closed–

form attractive solution. Moreover for the considered special case, we present an optimization technique for the
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mixing parameter when approached from a rate of convergenceperspective,i.e., a closed–form solution maximizing

the rate of convergence.

A. Predictor Based Distributed Average Consensus

Computational resources available at the nodes are often scarce and it is desirable that the algorithms designed for

distributed signal processing are computationally inexpensive. Linear functions are comparatively easy to implement.

Moreover, the analysis of linear algorithms is often straightforward and expressions for performance metrics and

iteration outcomes can be derived in closed form. This oftenmakes algorithms based on linear approximations more

predictable, computationally efficient and attractive. Thus in the following we will consider linear matrix functions

of appropriate sizeht , W, gt , [1 − α,α]T , ft , Θ. With these in mind, equations (6–8), when node specific

versions are considered, take the following form:

xi(t) = αxP
i (t) + (1 − α)xW

i (t) (9a)

xW
i (t) = Wiixi(t − 1) +

∑

j∈Ni

Wijxj(t − 1) (9b)

xP
i (t) = Θ

T
xi(t)

xi(t) (9c)

whereΘxi(t) = [θxi(t), . . . , θxi(t)]
T is curve parameter vector. We consider a convex combinationof the predicted

and obtained states,i.e., α ∈ [0, 1]. Convergence curve can be linearized in the vicinity of current state

xi(t) = θxi(t)t + θxi(t). (10)

Parametersθxi(t) and θxi(t) of this linear approximation can be estimated from the collection of previous node

statesxi(t) using standard least squares procedure [17]:

xi(t) = AtΘxi(t) (11)

whereAt is a M × 2 matrix

At =





t − M + 1 1

· · · · · ·

t − 1 1

t 1





(12)

Solution to the matrix equation (11) is known to have the following form:

Θxi(t) = (AT
t At)

−1
A

T
t xi(t) = A

†
txi(t) (13)
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WhereA
†
t is the Moore-Penrose pseudoinverse ofAt. Thusk-step prediction of local node state can be regarded

as a simple linear extrapolation:

xP
i (t, k) = Θ

T
xi(t)

t
P,k
t (14)

with t
P,k
t denoting the predictive time vector at timet:

t
P,k
t =



 t + k

1



 (15)

It should be noted that an equivalent extrapolation procedure can be formulated in terms of matrixA and predictive

time vectortP,k having simplified time invariant form:

A ,





1 1

· · · · · ·

M − 1 1

M 1





t
P,k ,



 M + k

1



 (16)

Reorganizing equations (13,14) and taking into account (16) gives the following simple node state prediction

procedure:

Θ = A
†T

t
P,k (17)

subsequently yielding

xP
i (t) = Θ

T
xi(t). (18)

Remark 1: In the following, we note two important remarks regarding the proposed approach for accelerating

the standard consensus algorithm for any given weight matrix:

(i) It can be seen from (17) thatxP
i (t) is a linear combination ofM previous local consensus values. Thus the

consensus acceleration mechanism outlined in equations (9a–9c) is fully local if it is possible to find optimum

value ofα in (9a) that does not require any global knowledge.

(ii) Note also thatΘ can be calculated off-line as it does not depend on the data.

B. One Step Predictor Based Distributed Average Consensus

General expressions describing the algorithm (9a–9c) using multistep predictor operating on multiple previous

node states are given in Appendix I. In this general case, thealgorithm analysis is complicated, but to gain further

insight to the algorithm’s performance we analyze an important case when the algorithm (9) is based on one step

extrapolator of node state operating on two previous node states,i.e., k = 1 andM = 2. In this caseΘ = [−1, 2]T
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hencexp
i (t) can be expressed as follows:

xP
i (t) = 2xW

i (t) − xi(t − 1). (19)

We note that the gradient of state can be estimated as∇̂xi(t) , xW
i (t) − xi(t − 1). Thus (19) can be rewritten in

a more concise form:

xP
i (t) = xW

i (t) + ∇̂xi(t). (20)

It is of interest to note that the one–step predictor hence updates the current state in the gradient direction.

Substituting (19) into (9a) we get the following expressionfor xi(t):

xi(t) = α(2xW
i (t) − xi(t − 1)) + (1 − α)xW

i (t) (21)

= (α + 1)xW
i (t) − αxi(t − 1) (22)

= (α + 1)



Wiixi(t − 1) +
∑

j∈Ni

Wijxj(t − 1)



− αxi(t − 1) (23)

= xi(t − 1)((1 + α)Wii − α) + (1 + α)
∑

j∈Ni

Wijxj(t − 1). (24)

This can be written in matrix form as:

x(t) = W[α]x(t − 1) (25)

whereW[α] is the weight matrix (as a function ofα) obtained through the proposed predictor based distributed

average consensus algorithm:

W[α] , (1 + α)W − αI (26)

The following proposition describes some properties of theweight matrixW[α]. Specifically, we show that if the

weight matrixW satisfies the conditions necessary for asymptotical convergence, thenW[α] also guarantees the

asymptotical convergence to consensus under some mild conditions.

Proposition 1: SupposeW satisfies the necessary conditions for the convergence of the standard consensus algo-

rithm. Moreover, letλ(1) ≥ λ(2) ≥ . . . ≥ λ(N) denote the eigenvalues associated with eigenvectorsu1,u2, . . . ,uN

and letλ(i)[α] denote the ranked eigenvalues ofW[α].

(i) If λ(N) ≥ 0, thenW[α] satisfies the required convergence conditions for allα. If λ(N) < 0, thenW[α] is a

doubly stochastic matrix. Moreover,ρ(W − J) < 1 if

α <
1 + λ(N)

1 − λ(N)
. (27)

(ii) The predictor based weight matrixW[α] has the same eigenvectors and its eigenvalues are related tothe



9

eigenvalues of the original matrixW via the relationship:

λ(i)[α] = (1 + α)λ(i) − α (28)

for any α and i = 1, 2, . . . , N .

Proof: See Appendix II.

As follows from the result of Proposition 1, eigenvalues of the predictor based weight matrixW[α] experience

left shift with respect to the eigenvalues of the original weight matrix W when α > 0. Moreover, it is easy to

show that ordering of the eigenvalues does not change duringthe shift:

λ(i) ≤ λ(j) ⇒ λ(i)[α] ≤ λ(j)[α] (29)

for all i, j, α ≥ 0, wherei andj are associated with some eigenvectorsui, uj of W. The implications of Proposition

1 are as follows. First, the second largest and the smallest eigenvalues of matrixW[α] always correspond to the

second largest and the smallest eigenvalues of matrixW. Second, the values of the second largest and the smallest

eigenvalues of matrixW[α] are always less than the values of the second largest and the smallest eigenvalues of

matrix W. Third, using the two previous facts and the definition of spectral radius (5) it is possible to formulate

the problem of the mixing parameter optimization in a simpleway. As follows from the considerations presented

in the following subsection, this optimization problem is convex and has a simple closed form solution.

C. Optimization of The Mixing Parameter

Recall thatα is the mixing parameter that defines the influence of the outcome of standard consensus iteration

and predictor in (9a) on the value of current node state in theproposed accelerated consensus algorithm. In the

following, we consider optimization ofα when approached from the rate of convergence perspective. Optimum

value of mixing parameter results in the maximum asymptoticconvergence rate for algorithmic structure (9) and

M = 2, k = 1 case.

Spectral radiusρ(W[α]−J) defines the worst–case measure of asymptotic convergence rate [7]. In fact, spectral

radius is directly related to the asymptotic convergence rate as defined in [8]:

r(W) , ρ(W[α] − J) = sup
x(0)6=Jx(0)

lim
t→∞

( ‖x(t) − Jx(0)‖
‖x(0) − Jx(0)‖

)1/t

. (30)

Thus the minimization of the spectral radiusρ(W[α] − J) leads to the maximization of the convergence rate, or

equivalently, to the minimization of the asymptotic convergence timeτ , (log(1/ρ(W[α] − J)))−1. The following

theorem considers the optimumα when the goal is to maximize the asymptotic convergence rate.

Theorem 1:One step predictor based on two previous values of local nodestate has the fastest asymptotic
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worst–case convergence rate if the value of mixing parameter equals to the following optimum value:

α∗ =
λ(N) + λ(2)

2 − λ(N) − λ(2)
(31)

whereλ(i) denotes the eigenvalues of the weight matrixW.

Proof: See Appendix III.

Note that, as expected, optimal mixing parameterα∗ satisfies the following:

α∗ <
1 + λ(N)

1 − λ(2) + 1 − λ(N)
(32)

<
1 + λ(N)

1 − λ(N)
(33)

where both the first and second lines follow from the fact that0 ≤ λ(2) < 1, respectively. We can thus conclude

that the optimal mixing parameter satisfies the required convergence conditions for all cases.

Remark 2:After some algebraic manipulations, it is of interest to note that

|λ(N)[α
∗]| =

λ(2) − λ(N)

2 − λ(2) − λ(N)
= λ(2)[α

∗]. (34)

Note that the optimal mixing parameter provides just enoughshift to the eigenvalues so that as we try to drive

λ(2)[α] smaller to obtain a faster convergence rate, optimal mixingparameter stops at a specific point where

|λ(N)[α
∗]| = λ(2)[α

∗] to avoid the|λ(N)[α]| > λ(2)[α] case which would give a slower convergence rate.

D. Convergence Rate Analysis

To see to what extent the proposed algorithm (9) yields performance improvement over the conventional consen-

sus, we consider the ratio of the spectral radius of corresponding matrices that gives the lower bound on performance

improvement:

γ[α] ,
ρ(W − J)

ρ(W[α] − J)
=

λ(2)

max{λ(2)[α], |λ(N)[α]|} (35)

The following proposition considers the provided convergence rate improvement over the standard consensus

algorithm when optimal mixing parameter is utilized.

Proposition 2: In the optimal case,i.e., whenα = α∗, performance improvement factor is given by

γ[α∗] =
λ(2)(2 − λ(2) − λ(N))

λ(2) − λ(N)
. (36)

Proof: In the optimal case, substitutingα∗ into (35) and taking into account the fact that|λ(N)[α
∗]| = λ(2)[α

∗],

after some algebraic manipulations, yield the expression for γ[α∗].

Although (31) provides an expression for optimum mixing factor resulting in fastest asymptotic convergence

rate, the calculation of this optimum value requires knowledge of the second and the last eigenvalues of matrixW.
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This in turn either requires knowledge ofW or some centralized mechanism for calculation and distribution of the

eigenvalues ofW. In many practical situations such information may not be available. Therefore it is of interest

to derive some suboptimum expressions forα that would result in less performance gain, but require considerably

less information at the node level.

Proposition 3: The predictor based distributed average consensus has asymptotic worst-case convergence rate

faster than that of conventional consensus if the value of mixing parameter is in the following range:

0 < α ≤ α∗. (37)

Proof: The asymptotic worst-case convergence rate of algorithm (9) is faster than that of conventional

consensus algorithm if and only ifγ[α] > 1 ⇒ ρ(W[α] − J) < ρ(W − J). We can rewrite this condition in

the following form: 




λ(2)(1 + α) − α
λ(2)

< 1

α(1 − λ(N)) − λ(N)

λ(2)
< 1

(38)

indicating that 




α(λ(2) − 1) < 0

α <
λ(2) + λ(N)

1 − λ(N)

. (39)

Taking into account that(λ(2) − 1) < 0 the strengthened version of (39) can be written as follows:

0 < α <
λ(N) + λ(2)

2 − λ(N) − λ(2)
(40)

Finally, noting that this expression is equal toα∗ concludes the proof.

To ensure that the performance improvement factor is greater than unity and remove the need of weight matrix

information, we proceed to derive bounds onα∗ satisfying the range defined by the Proposition 3. The mentioned

constraints indicate thatα∗ needs to be lowerbounded, which, subsequently indicates that we need to derive a

lowerbound forλ(2) + λ(N). The next proposition provides such a bound for this term in terms of the trace of

weight matrixW.

Proposition 4: If the weight matrixW satisfies the convergence conditions and its eigenspectrumis a convex

function of the eigenvalue index then

λ(2) + λ(N) ≥
2(tr(W) − 1)

N − 1
(41)

wheretr(·) denotes the trace of its argument.
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Proof: Recall that the sum of eigenvalues of a matrix is equal to its trace:

N∑

i=1

λi =

N∑

i=1

λ(i) = tr(W) (42)

Noting thatλ(1) = 1 and rearranging the summation give

N∑

i=2

λi = tr(W) − 1. (43)

Noting the fact that the eigenspectrum is convex function ofthe eigenvalue index, we can have:

(λ(2) + λ(N))(N − 1)

2
≥

N∑

i=2

λi (44)

Substituting (43) into (44) results in the desired bound.

To avoid notational burden, let us denote the lowerbound forλ(2) + λ(N) as following:

ξ ,
2(tr(W) − 1)

N − 1
. (45)

Proposition 4, thus, provides an upperbound for mixing parameterα in terms of the trace of weight matrixW

satisfying the convergence and improvement factor conditions:

α ≤ ξ

2 − ξ
, Λ(ξ). (46)

If tr(W) is calculated in a centralized fashion then it is a far less complicated operation than computing eigenvalues

of the global weight matrix necessary to find optimum mixing parameter. Moreover, lower bound on the sum of the

second largest and the smallest eigenvalue of matrixW provided linearly depends on the average of the diagonal

terms of the weight matrix and thus can also be calculated using standard consensus algorithm. However, convexity

assumption made appears to be strong and unnecessary in manycases. Thus it is of interest to have a more general

and rigorous approach to this problem based on fundamental properties of eigenspectrum of a matrix.

Upperbound provided above still requires the knowledge of the diagonal elements ofW. However, in the following

we show that there exists an asymptotic upperboundΛ∞(ξ) for α (satisfying the convergence and convergence

improvements factor conditions) that does not require a global knowledge and can be calculated off–line. This

quantity can be used in a fully local accelerated consensus.To be able to show this we need to make the following

assumptions:

(i) Sensors are randomly distributed in some areaD according to some known spatial distributionpx,y(x, y).

(ii) Two nodesi andj in the sensor network are considered to be connected if they are closer to each other then
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some predefined connectivity radiusrc:





I{r2

i,j ≤ r2
c} = 1 if r2

i,j ≤ r2
c

I{r2
i,j ≤ r2

c} = 0 if r2
i,j > r2

c

(47)

whereI{r2
i,j ≤ r2

c} is the indicator function and

r2
i,j = x2

i,j + y2
i,j , (xi − xj)

2 + (yi − yj)
2 (48)

is the Euclidian distance between the nodes.

(iii) The weight matrix W satisfying necessary and sufficient consensus convergenceconditions is constructed

according to some rule of the form:





Wij = I{r2

i,j ≤ r2
c}L(di, dj), i 6= j

Wij = 1 −∑N
j=1,j 6=i Wij , i = j

(49)

whereL(di, dj) is some function of the local connectivity degreesdi anddj of nodesi andj satisfying:

N∑

j=1

L(di, dj) = 1

|L(di, dj)| < 1

(50)

Given the assumptions outlined above, the following theorem provides an expression for an asymptotic upper

bound on the value of mixing parameterα in terms of the expectation ofI{r2
i,j ≤ r2

c}L(di, dj).

Theorem 2:If W is the N × N weight matrix constructed according toL(di, dj) satisfying (50) and random

variablesζi defined by:

ζi,N =

N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj) (51)

are identically distributed with mean

|E{ζi,N}| = |E{ζ}| (52)

and covariance structure satisfying
∑

N∈N+

σN

N

√
RN−1 +

σ2
N

N2
< ∞ (53)

whereRN andσN are defined as follows:

RN ,
1

N2

N∑

i=1

N∑

j=1

E{(ζi,N − E{ζi,N})(ζj,N − E{ζj,N})} (54)

σN , E{(ζi,N − E{ζi,N})2} (55)



14

then the lower bound onλ(2) + λ(N) given by Proposition 4 almost surely converges to

ξ∞ , lim
N→∞

ξ
a.s.−→

N→∞
2(1 − E{ζ}) (56)

and defines an asymptotic upper bound onα asN → ∞ given by the following expression:

α
a.s.
≤

N→∞
Λ(ξ∞) (57)

Proof: First, we note that by the construction of the weight matrixW (49) we can transform the expression

for ξ (41) as follows:

ξ =
2

N − 1
(tr(W) − 1) (58)

=
2

N − 1

N∑

i=1

Wii −
2

N − 1
(59)

=
2N

N − 1

1

N

N∑

i=1



1 −
N∑

j=1,j 6=i

Wij



− 2

N − 1
(60)

=
2(N − 1)

N − 1
− 2N

N − 1

1

N

N∑

i=1

N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj) (61)

= 2 − 2

N − 1

N∑

i=1

ζi (62)

where to obtain the last equality we have used the definition (51). Note thatI{r2
i,j ≤ r2

c} is a random variable that

is Bernoulli distributed according to a pmf:

Pr{I{r2
i,j ≤ r2

c}} = p

Pr{I{r2
i,j > r2

c}} = 1 − p

(63)

In (63) p is the probability that two nodes in the sensor network are connected. This probability can be expressed

as follows:

p =

∫∫∫∫

S
px,y(xi, yi)px,y(xj , yj)dxidyidxjdyj (64)

where the setS is defined over the areaD and connectivity regionr2
i,j ≤ r2

c :

S = {(xi, yi, xj , yj)| (xi − xj)
2 + (yi − yj)

2 ≤ r2
c ; xi, yi, xj , yj ∈ D} (65)

The distribution of random variabled = L(di, dj) is less straightforward to characterize asL(·) is an arbitrary

function and it is beyond the scope of current paper. We require, however, thatL(·) is such that (52) and (53)

hold. It is straightforward to show that both mean and variance of random variablesζi are bounded under our
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assumptions onL(di, dj):

|E{ζi}| =

∣∣∣∣∣∣
E






N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)






∣∣∣∣∣∣
(66)

< sup
L

∣∣∣∣∣∣

N∑

j=1,j 6=i

L(di, dj)

∣∣∣∣∣∣
= 2. (67)

Moreover,

σ2
N = E{(ζi,N − E{ζi,N})2} (68)

= E{ζ2
i,N} − E{(ζi,N}2 (69)

≤ E{ζ2
i,N} (70)

= E






N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}L(di, dj)

N∑

k=1,k 6=i

I{r2
i,k ≤ r2

c}L(di, dk)




 (71)

< sup
L

∣∣∣∣∣∣

N∑

j=1,j 6=i

L(di, dj)

∣∣∣∣∣∣
sup
L

∣∣∣∣∣∣

N∑

k=1,k 6=i

L(di, dk)

∣∣∣∣∣∣
= 4. (72)

Now, taking into account the results in (66) and (68) the following centered square integrable random process

can be considered:

χi,N = ζi,N − E{ζi,N}, i = 1 . . . N (73)

We note that if the correlation function of this random process satisfies ergodicity assumptions implied by (53), we

can invoke the Strong Law of Large Numbers stated by Poznyak [18] in Theorem 1 to show that

1

N

N∑

i=1

χi,N
a.s.−→ 0. (74)

In its turn, this along with assumption (52) implies that

1

N − 1

N∑

i=1

ζi,N
a.s.−→ E{ζ}. (75)

Thus combining the last result with (62) leads us to the following conclusion:

ξ∞ = lim
N→∞

{
2 − 2

N − 1

N∑

i=1

ζi

}
(76)

a.s.−→
N→∞

2(1 − E{ζ}) (77)

Finally, noting (46) concludes the proof.
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Note the above result relies on the assumption thatL(di, dj) satisfies the conditions discussed above. The

following remark shows that this assumption holds for the popular max–degree weight design scheme [5], [7]. The

max–degree weights are very simple to compute and are well suited for distributed implementation. In particular,

each node needs no information to determine the weights on its adjacent edges. Furthermore, the nodes do not

need any global knowledge of the communication graph, or even the total number of nodes.

In the following, we demonstrate that the assumptions (52) and (53) hold in practice. LetL(di, dj) be defined

in accordance with maximum degree weight matrix construction mechanism:

L(di, dj) ,
1

N
(78)

In this caseζi,N takes the following form:

ζi,N =
1

N

N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c} (79)

Taking the expectation ofζi,N gives us:

E{ζi,N} =
1

N

N∑

j=1,j 6=i

E{I{r2
i,j ≤ r2

c}} =
N − 1

N
p, 0 ≤ p ≤ 1 (80)

Now, consider thedouble averaged[18] correlation function (54) of the random process definedin (73)

RN =
1

N2

N∑

i=1

N∑

j=1

E{(ζi,N − E{ζi,N})(ζj,N − E{ζj,N})}

=
1

N2

N∑

i=1

N∑

j=1

E








 1

N

N∑

k=1,k 6=i

I{r2
i,k ≤ r2

c} −
N − 1

N
p







 1

N

N∑

ℓ=1,ℓ 6=j

I{r2
j,ℓ ≤ r2

c} −
N − 1

N
p










=
1

N2

N∑

i=1

N∑

j=1

E





1

N2

N∑

k=1,k 6=i

I{r2
i,k ≤ r2

c}
N∑

ℓ=1,ℓ 6=j

I{r2
j,ℓ ≤ r2

c}






− N − 1

N2
p




N∑

k=1,k 6=i

E
{
I{r2

i,k ≤ r2
c}
}

+

N∑

ℓ=1,ℓ 6=j

E
{
I{r2

j,ℓ ≤ r2
c}
}


+
(N − 1)2

N2
p2

=
1

N4

N∑

i=1

N∑

j=1

N∑

k=1,k 6=i

N∑

ℓ=1,ℓ 6=j

E
{
I{r2

i,k ≤ r2
c}I{r2

j,ℓ ≤ r2
c}
}
− 2

(N − 1)2

N2
p2 +

(N − 1)2

N2
p2

=
1

N4

N∑

i=1

N∑

j=1

N∑

k=1,k 6=i

N∑

ℓ=1,ℓ 6=j

E
{
I{r2

i,k ≤ r2
c}I{r2

j,ℓ ≤ r2
c}
}
− (N − 1)2

N2
p2

(81)

Let us look at the quadruple sum in (81). There are four possible cases to analyze:

1) i = j andk = ℓ

We note that the number of occurrences of this event is equal to N(N − 1). Furthermore, the expectation
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under the sum can be easily evaluated as follows:

E
{
I{r2

i,k ≤ r2
c}2
}

= p2 + p(1 − p) = p (82)

2) i = j andk 6= ℓ

We note that the number of occurrences of this event is equal to N(N − 1)(N − 2). It is not necessary to

evaluate the expectation directly. It is sufficient to note that this expectation corresponds to the probability of

three arbitrary nodes in the network being connected. This probability is less than or equal to the probability

of two arbitrary nodes being connected. Thus we have an obvious result:

E
{
I{r2

i,k ≤ r2
c}I{r2

i,ℓ ≤ r2
c}
}

= p2 + p′ (83)

wherep′ is bounded by the following

0 ≤ p′ ≤ p(1 − p) (84)

3) i 6= j andk = ℓ

We note that the number of occurrences of this event is also equal to N(N − 1)(N − 2). Furthermore, the

expectation in this case has the same meaning as (83)

E
{
I{r2

i,k ≤ r2
c}I{r2

j,k ≤ r2
c}
}

= p2 + p′ (85)

4) i 6= j andk 6= ℓ

We note that the number of occurrences of this event is equal to N(N − 1)(N2 − 3N + 3). Furthermore, the

expectation is easy to evaluate using the independence of the random variables involved. We note that in this

case the expectation corresponds to the probability of two independent randomly selected pairs of sensors in

the network being connected:

E
{
I{r2

i,k ≤ r2
c}I{r2

j,ℓ ≤ r2
c}
}

= p2 (86)
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Combining the result of the above analysis with (81) gives the following bound for the double averaged correlation

function:

RN =
1

N4

(
N(N − 1)(p2 + p(1 − p)) + 2N(N − 1)(N − 2)(p2 + p′)

)
− (N − 1)2

N2
p2

=
(N − 1)2

N2
p2 − (N − 1)2

N2
p2 +

N(N − 1)

N4
p(1 − p) +

2N(N − 1)(N − 2)

N4
p′

<
p(1 − p)

N2
+

2p′

N

<
p(1 − p)

N2
+

2p(1 − p)

N

= p(1 − p)
2N + 1

N2

(87)

Now we can use (87) and (68) to show that series (53) converges. Indeed,

∑

N∈N+

σN

N

√
RN−1 +

σ2
N

N2
(88)

<
∑

N∈N+

2

N

√

p(1 − p)
2(N − 1) + 1

(N − 1)2
+

4

N2
(89)

<
∑

N∈N+

2
√

p(1 − p)(2N − 1)

N(N − 1)
+

4

N2
(90)

<
∑

N∈N+

2
√

2
√

p(1 − p)√
N(N − 1)

+
4

N2
(91)

it is obvious that series (91) converges, which implies the convergence of (88). Thus taking into account (62) and

(79) the following result can be stated for the asymptotic lower bound onλ(2) + λ(N) (56) in the situation when

max–degree weights are used:

ξMD
∞

a.s.−→
N→∞

2(1 − p) (92)

Substituting (92) into (46) and rearranging the terms results in the following asymptotic upper bound onα:

Λ(ξMD
∞ ) =

1 − p

p
. (93)

This result is due to the following fact. If we considerI{r2
i,j ≤ r2

c} as noisy measurements bearing the information

regarding the true value ofp in the estimator of the form

p̂ =
1

N − 1

N∑

i=1

ζi,N =
1

N

N∑

i=1

1

N − 1

N∑

j=1,j 6=i

I{r2
i,j ≤ r2

c}, (94)

then according to our analysis of double averaged correlation function, the number of independent measurements

grows at leastO(
√

N) times faster than the number of correlated ones. This fact ensures the ergodicity of the

random process defined byζi,N , i = 1 . . . N . Hence the value of estimator̂p (94) almost surely converges to the
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true value ofp asN goes to∞. We note that in max–degree settingp can be calculated as shown in Appendix IV.

IV. N UMERICAL EXAMPLES

First of all we would like to compare the convergence time results of the algorithm we propose with the algorithms

presented in [8]. Let us introduce the following notation. MD and MH are the standard consensus algorithms based

on maximum degree and Metropolis–Hastings weight matrices; OPT and BC are optimum and the best constant

algorithms from [8]; MD–OM , MD–SM , and MD–SAM denote the prposed algorithm using maximum degree

weight matrix and optimumα, suboptimumα chosen according to trace bound (46), and suboptimumα chosen

according to asymptotic bound (46); MH–OM and MH–SM denote the proposed algorithm using Metropolis–

Hastings weight matrix, optimumα and suboptimumα chosen according to trace bound (46). In this notationM is

an integer number showing how many past samples are used in the predictor. The comparison results are presented

in Fig. 1. Here the algorithm (9) is simulated in scenario that was analyzed analytically in section III, that is, in

scenario whenM = 2 andk = 1. It is interesting to note in Fig. 1(a) that in the case when our algorithm is used

with maximum degree weight matrix and optimumα it gives almost exactly the same result as the best constant

algorithm. It can also be seen in Fig. 1(a) that asymptotic upper bound onα holds whenN is as low as20 for

the maximum degree weight matrixW. The two curves corresponding to the bound based on the traceof weight

matrix (46) and represented by× and asymptotic upper bound developed in Theorem 2, (57) and represented by◦

are almost indistinguishable. At the same time, it is clear from Fig. 1(b) that although our algorithm is extremely

simple and does not require any global optimization, it performs quite close to the optimum algorithm from [8] and

outperforms the best constant algorithm when it is used in conjunction with Metropolis–Hastings weight matrix.

Simulation results presented later in this section show that considerable further improvement is achievable using

our algorithm withM = 3. From Fig. 1 we conclude that our algorithm best performs when it is used with

Metropolis–Hastings weight matrix. Thus we conduct all therest of the experiments using our algorithm with

Metropolis–Hastings weight matrix only.

The plot of MSE for the proposed and standard consensus algorithms is shown in Fig. 2. We used the following

simulation parameters to generate this figure. Number of trials is 500, number of nodes is 50 in Fig. 2(a) and 25

in Fig. 2(b), connectivity radius is equal to
√

log N/N , mean value at every node is 1, and standard deviation of

spatially white identically distributed Gaussian noise is1. To obtain the results for our algorithm whenM = 3

andk = 1 we used a0.1 grid for the unknown parameterα and evaluated MSE of our algorithm at every value

of α during each of the trials. After that we selected the lowest value of MSE that corresponded to the value of

α closest to the optimum one. The conclusions that can be made by observing Fig. 2 are twofold. First, Fig. 2

confirms the fact that performance of our algorithm withM = 2 andk = 1 is very close to the optimum in terms

of step-wise MSE decay. Second, our algorithm withM = 3 andk = 1 outperforms even the optimum algorithm
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[8] in terms of step-wise MSE decay. This result can be attributed to the following fact. By properly combining

several past local samples of consensus state with the current consensus states of the neighbors it is possible to

incorporate into the next local consensus state estimate more information regarding the true consensus value than

by using any proper combination of the current consensus states of the neighbors only.

Finally, we would like to compare the performance of our algorithm using different values ofM ≥ 2. The results

of simulation are shown in Fig. 3. At this point we do not have expressions for optimumα in a more general case

when the number samplesM used by the predictor may be different from2. Thus to generate this plot we used a

0.1 grid for the unknown parameterα and evaluated MSE of our algorithm at every value ofk, M andα. After

that for all k andM we selected the lowest value of MSE that was generated by the algorithm usingα closest to

the optimum one. These results were averaged over 500 trials. Fig. 3 implies that in our setting where parameters

Θ are given by formula (99) the best performance is obtained ifM = 3 is used. It can also be seen from this

figure that the performance improvement is quite substantial. On the other hand, the performance of the algorithm

degrades asM increases further. This can be explained by the fact that to predict the current state we use linear line

parametrization for the predictor. As the number of samplesin the predictor grows, linear parametrization becomes

less and less accurate rendering the predictor to be less andless reliable. Also it is noteworthy that forM = 3

the results are not sensitive to change in predictor stepk. In this case the difference in the performance of the

algorithm with differentk is negligible and can be attributed to the Monte–Carlo simulation error.

V. CONCLUDING REMARKS

APPENDIX I

GENERAL EXPRESSIONS FOR ARBITRARYM AND k

In this section we present the expressions for weightsΘ in (17) and current statex(t) as a function of algorithm

parameters and previous states for the case of arbitraryM andk. First, we note that we need an expression for the

pseudoinverseA†. By the definition ofA in (16) we get:

A
T
A =



 1 1 · · · 1

1 2 · · · M









1 1

2 1

· · · · · ·

M 1





=



 1 + 2 + · · · + M − 1 + M 1 + 1 + · · · + 1 + 1

12 + 22 + · · · + (M − 1)2 + M2 1 + 2 + · · · + M − 1 + M





(95)

A
T
A =




1
2(M + 1)2 − 1

2M − 1
2 M

1
3(M + 1)3 − 1

2 (M + 1)2 + 1
6M + 1

6
1
2(M + 1)2 − 1

2M − 1
2



 (96)
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Next we note that the inverse ofAT
A can be found easily in closed form:

(AT
A)−1 =

2

M(M − 1)



 −3 6
M+1

2M + 1 −3



 (97)

Thus the expression for the pseudoinverseA
† follows immediately:

A
† = (AT

A)−1
A

T =
2

M(M − 1)




6

M+1 − 3 12
M+1 − 3 · · · 6M

M+1 − 3

2M + 1 − 3 2M + 1 − 6 · · · 2M + 1 − 3M



 (98)

This results in the following expression for predictor weights:

Θ = A
†T

t
P,k =

2

M(M − 1)





(
6

M+1 − 3
)

(M + k) + 2M + 1 − 3
(

12
M+1 − 3

)
(M + k) + 2M + 1 − 6

· · ·
(

6M
M+1 − 3

)
(M + k) + 2M + 1 − 3M





(99)

Next, we present the general expression forx(t) as a function of algorithm parameters and previous states. As

before, we assume that in general predictor weights are represented by the vectorΘ = [θ1, θ2, . . . , θM ] given by

the expression in (99). In this case the value of the predictor at time t is expressed as follows:

x
P(t) =

M∑

j=1

θjx(t − M + j) (100)

Recall that in our algorithmx(t) is a mixture of predicted statexP(t) and the result of conventional consensus

x
W(t) as in (9a)

x(t) = αx
P(t) + (1 − α)xW(t)

= α

M−2∑

j=1

θjx(t − M + j) + α(θM−1x(t − 1) + θMx
W(t)) + (1 − α)xW(t) (101)

= α

M−2∑

j=1

θjx(t − M + j) + [αθM−1I + (1 − α + αθM )W]x(t − 1)

The last expression on the right hand side of (101) can be easily recognized as a generalized version of (21). It can

be seen from this expression that in the case of generalM the output of our algorithm at timet cannot be written

even in the generalized form of consensusx(t) = W(t)x(t − 1), whereW(t) is possibly time dependant weight

matrix. Thus the optimization of the value of the parameterα using the expression (101) directly is impossible. This

happens because of the presence of the terms under the sum in this equation. Each of the termsx(t−M + j) has

expression similar to (101). The unfolding of the equation (101) back in time leads to very complicated expression
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including the weighted sum of all the powers ofW from time 0 and up to timet. At this point in time we are not

aware of how to deal with this extremely complex expression to optimize the value ofα directly or through some

suitable factorization.

APPENDIX II

ASYMPTOTIC CONVERGENCECONDITIONS OF THEPREDICTOR BASED WEIGHT MATRIX

Note that to ensure asymptotical convergence, we need to prove the followings:

W[α]1 = 1, 1
T
W[α] = 1

T , ρ(W[α] − J) < 1 (102)

whereJ = (N)−1
11

T. Substitution of (26) into the left part of (102) results in the following:

W[α]1 = ((1 + α)W − αI)1 (103)

= W1 + αW1 − αI1 (104)

= 1 + α1 − α1 = 1. (105)

Proof for the right part of (102) is analogous and is thus omitted.

We now consider the spectral radius of the predictor based weight matrix. It is sufficient to show that

W[α]ui = ((1 + α)λ(i) − α)ui (106)

for any α and i = 1, 2, . . . , N . Rearrangement of (26) gives the inverse relationship betweenW andW[α]:

W = (1 + α)−1(W[α] + αI) (107)

Thus it follows from the definition of an eigenvector and the relationship betweenW andW[α] that for allα andi:

Wui = λ(i)ui

(1 + α)−1(W[α] + αI)ui = λ(i)ui (108)

W[α]ui + αIui = (1 + α)λ(i)ui (109)

W[α]ui = ((1 + α)λ(i) − α)ui.

Hence,λ(1)[α] = 1. Now, let us consider the spectral radius ofW[α] − J defined asρ(W[α] − J):

ρ(W[α] − J) , max{λ(2)[α], |λ(N)[α]|}. (110)

Note that forα > 0, the eigenvalues experience a left shift sinceλ(i)[α] = α(λ(i) −1)+λ(i) and(λi −1) is always



23

negative andα > 0. Thus to ensure thatρ(W − J) < 1, we just need to make sure thatλ(N)[α] > −1. Hence,

α(λ(N) − 1) − α > −1 ⇒ α <
1 + λ(N)

1 − λ(N)
. (111)

Note that this is always satisfied forλ(N) ≥ 0 sinceα ∈ [0, 1].

APPENDIX III

OPTIMAL M IXING PARAMETER

In order to show thatα∗ is the optimal solution to the considered maximization problem, we need to show that

α = α∗ is the global minimizer ofρ(W[α] − J). Hence we define the following optimization problem:

α∗ = arg min
α

ρ(W[α] − J) (112)

= arg min
α

max
i6=1

(|λ(i)[α]|). (113)

However, this problem can be converted into a simpler one:

α∗ = arg min
α

max(|λ(N)[α]|, λ(2)[α]) (114)

sinceλ(N)[α] is the smallest andλ(2)α is the largest eigenvalue of(W[α] − J). Noting that

max{a, b} =
|a − b| + (a + b)

2
(115)

we can further simplify (114)

α∗ = arg min
α

||λ(N)[α]| − λ(2)[α]| + (|λ(N)[α]| + λ(2)[α]) (116)

, arg min
α

Q[α]. (117)

Applying the result of the Proposition 1 reduces the objective functionG(α) to the following:

Q[α] = ||λ(N)[α]| − λ(2)[α]| + (|λ(N)[α]| + λ(2)[α]) (118)

= ||(1 + α)λ(N) − α| − ((1 + α)λ(2) − α)| + |(1 + α)λ(N) − α| + ((1 + α)λ(2) − α) (119)

Note that

λ >
α

1 + α
⇒ (1 + α)λ − α > 0, and, λ <

α

1 + α
⇒ (1 + α)λ − α < 0. (120)

Then forα < λ(N)/(1 − λ(N)), after some algebra, we obtain

Q[α] = |α(λ(N) − λ(2)) − λ(2) + λ(N)| + α(λ(2) + λ(N) − 2) + λ(2) + λ(N) (121)
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Note thatQ′[α] is discontinuous atα = −1, given thatα < λ(N)/(1 − λ(N)). Consider the derivative ofQ[α] for

α > −1:

∂Q[α]

∂α
|α>−1 = λ(N) − λ(2) + λ(N) + λ(2) − 2 = 2(λ(N) − 1) < 0 (122)

since |λ(N)| < 1. Although, we restricted ourselves to0 ≤ α ≤ 1, for completeness, we consider the case where

α < −1,

Q[α]|α<−1 =
∂Q[α]

∂α
G(α)|α<−1 = −λ(N) + λ(2) + λ(N) + λ(2) − 2 = 2(λ(2) − 1) < 0 (123)

since|λ(2)| < 1. Thus the objective functionQ[α] is strictly decreasing whenα < λ(N)/(1−λ(N)). In the following,

we show that, whenα > λ(N)/(1 − λ(N)), the objective function is strictly decreasing whenα < α∗ andα > α∗,

which would indicate that theα = α∗ is the global optimum value. Consider the following:

Q[α] = |α(2 − λ(N) − λ(2)) − (λ(N) + λ(2))| + (α + 1)(λ(2) − λ(N)) (124)

Note that

α = α∗ =
λ(2) + λ(N)

2 − λ(N) − λ(2)
(125)

is a discontinuity point ofQ′[α] given thatα > λ(N)/(1 − λ(N)). Consider the derivative ofQ[α] for α > α∗:

Q[α]|α>α∗ = 2 − λ(N) − λ(2) + λ(2) − λ(N) = 2(1 − λ(N)) > 0 (126)

since|λ(N)| < 1. On the other hand, ifα < α∗

Q[α]|α<α∗ = −2 + λ(N) + λ(2) + λ(2) − λ(N) = 2(λ(2) − 1) < 0 (127)

since|λ(2)| < 1.

To conclude the proof, we note thatQ[α] is strictly decreasing whenα < α∗, andQ[α] is strictly increasing

whenα > α∗, indicating thatα∗ is the global minimum ofQ[α] and henceρ(W[α] − J).

APPENDIX IV

PROBABILITY THAT TWO ARBITRARY NODES ARE CONNECTED

In this section we present the calculation of the probability that two randomly selected nodes in a sensor network

with connectivity radiusrc and sensors uniformly distributedpxi,yi
(xi, yi) = 1, xi, yi ∈ [0, 1] in a normalized

square areaD such thatD = {x, y|x, y ∈ [0, 1]} on the plane are connected. As was mentioned before, this
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probability can be evaluated using integral of the form

p =

∫∫∫∫

S
pxi,yi

(xi, yi)pxj ,yj
(xj , yj)dxidyidxjdyj (128)

where the setS is defined as follows

S = {(xi, yi, xj , yj)| (xi − xj)
2 + (yi − yj)

2 ≤ r2
c ; xi, yi, xj, yj ∈ [0, 1]} (129)

To facilitate calculation of the integral (128) given the set of integration limits (129) we can divide this problem

into two parts:rc ≤ 1 and1 < rc ≤
√

2. Note also that random variablesx andy can be introduced:

x = xi − xj , y = yi − yj. (130)

It is obvious that due to the fact thatpxi,yi
(xi, yi) is uniform, the joint distribution ofx, y is triangular:

fx,y(x, y) =






1
4 (1 − |x|)(1 − |y|) if (x, y) ∈ [−1, 1]

0 otherwise
. (131)

Hence the integral in (128) can be reformulated into double integral:

p =

∫∫

√
x2+y2<rc, (x,y)∈[−1,1]

fx,y(x, y)dxdy. (132)

Due to the symmetry of the problem we can consider only a positive quadrant during the calculation of (132). In

the caserc ≤ 1 it reduces to the following:

p = 4

rc∫

x=0

(1 − x)

√
r2

c−x2∫

y=0

(1 − y)dydx =
1

2
r4
c −

8

3
r3
c + πr2

c . (133)

On the other hand, when1 < rc ≤
√

2 we can reformulate (132) as follows:

p = 1 − 4

1∫

y=
√

r2
c−1

(1 − y)

1∫

x=
√

r2
c−y2

(1 − x)dxdy

= −1

2
r4
c +

8

3
r2
c

√
r2
c − 1 − 2r2

c +
4

3

√
r2
c − 1 − 2r2

c arcsin

(√

1 − 1

r2
c

)

+ 2r2
c arcsin

(
1

rc

)
+

1

3
.

(134)

REFERENCES

[1] C. Intanagonwiwat, R. Govindan, and D. Estrin, “Directed diffusion: A scalable and robust communication paradigm for sensor

networks,” inProceedings of the ACM/IEEE Internation Conference on Mobile Computing and Networking, 2000.



26

[2] J. Zhao, R. Govindan, and D. Estrin, “Computing aggregates for monitoring wireless sensor networks,” inProceedings of the

International Workshop on Sensor Network Protocols and Applications, 2003.

[3] S. R. Madden, R. Szewczyk, M. J. Franklin, and D. Culler, “Supporting aggregate queries over ad-hoc wireless sensor networks,” in

Proceedings of the Workshop on Mobile Computing Systems andApplications, 2002.

[4] A. Montresor, M. Jelasity, and O. Babaoglu, “Robust aggregation protocols for large-scale overlay networks,” inProceedings of the

International Conference on Dependable Systems and Networks, 2004.

[5] L. Xiao, S. Boyd, and S. Lall, “A scheme for robust distributed sensor fusion based on average consensus,” inProceedings of the

IEEE/ACM Int. Symp. on Inf. Proc. in Sens. Netw., Los Angeles, CA, Apr. 2005.

[6] C. C. Moallemi and B. V. Roy, “Consensus propagation,”IEEE Trans. Inform. Theory, vol. 52, no. 11, pp. 4753–4766, Nov. 2006.

[7] L. Xiao, S. Boyd, and S.-J. Kim, “Distributed average consensus with least–mean–square deviation,”Journal of Parallel and Distributed

Computing, vol. 67, no. 1, pp. 33–46, Jan. 2007.

[8] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging.”Systems and Control Letters, vol. 53, no. 1, pp. 65–78, Sep.

2004.

[9] N. Lynch, Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Francisco, CA, 1996.

[10] C.-Z. Xu and F. Lau,Load balancing in parallel computers: theory and practice. Kluwer, Dordrecht, 1997.

[11] Y. Rabani, A. Sinclair, and R. Wanka, “Local divergenceof markov chains and the analysis of iterative load-balancing schemes,” in

Proceedings of the IEEE Symp. on Found. of Comp. Sci., Palo Alto, CA, Nov. 1998.

[12] W. Ren and R. Beard, “Consensus seeking in multiagent systems under dynamically changing interaction topologies,” IEEE Trans.

Automat. Contr., vol. 50, no. 5, pp. 655–661, 2005.

[13] D. S. Scherber and H. C. Papadopoulos, “Locally constructed algorithms for distributed computations in ad-hoc networks,” in

Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks, 2004.

[14] D. P. Spanos, R. Olfati-Saber, and R. M. Murray, “Distributed sensor fusion using dynamic consensus,” inProceedings of the 16th

IFAC World Congress, 2005.

[15] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algorithms.”IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,

Jun. 2006.

[16] D. Kempe and F. McSherry, “A decentralized algorithm for spectral analysis,” inProceedings of the 36th ACM symposium on theory

of computing, 2004, pp. 561–568.

[17] P. R. Kumar and P. Varaiya,Stochastic systems: estimation, identification and adaptive control. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1986.

[18] A. S. Poznyak, “A new version of the strong law of large numbers for dependent vector processes with decreasing correlation,” in

Proceedings of the 39th IEEE Conference on Decision and Control, vol. 3, 2000, pp. 2881–2882.



27

10 20 30 40 50

50

100

150

200

250

300

 N

τ as
ym

MD
MD−O2
MD−S2
MD−SA2
OPT
BC

(a) Following algorithms were simulated. MD:△, MD–O2: +, MD–S2:×, MD–SA2: ◦, BC: ♦, OPT: �

10 20 30 40 50
10

20

30

40

50

60

70

 N

τ as
ym

MH
MH−O2
MH−S2
OPT
BC

(b) Following algorithms were simulated. MH:△, MH–O2: +, MH–S2:×, BC: ♦, OPT:�

Fig. 1. Asymptotic convergence time versus the number of nodes in the network



28

20 40 60 80 100

−80

−70

−60

−50

−40

−30

−20

−10

Time step

M
S

E
, d

B

MH
MH−O2
MH−S2
MH−O3
OPT
BC

(a) Number of nodesN = 25

20 40 60 80 100

−70

−60

−50

−40

−30

−20

−10

Time step

M
S

E
, d

B

MH
MH−O2
MH−S2
MH−O3
OPT
BC

(b) Number of nodesN = 50

Fig. 2. MSE versus time step for the proposed and standard consensus algorithm. Following algorithms were simulated. MH: △, MH–O2:
+, MH–S2:×, MH–O3: ⊲, BC: ♦, OPT: �
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Fig. 3. MSE versus the number of previous statesM that were used to predict current local state fork = 1, 2, 3


