
1

Accelerated Distributed Average Consensus Via

Localized Node State Prediction
Tuncer C. Aysal, Boris N. Oreshkin and Mark J. Coates

Telecommunications and Signal Processing–Computer Networks Laboratory

Department of Electrical and Computer Engineering

McGill University, Montreal, QC, Canada

Email: {tuncer.aysal, mark.coates}@mcgill.ca, boris.oreshkin@mail.mcgill.ca

Abstract

This paper proposes an approach to accelerate local, linear iterative network algorithms asymptotically

achieving distributed average consensus. We focus on the class of algorithms in which each node

initializes its “state value” to the local measurement and then at each iteration of the algorithm, updates

this state value by adding a weighted sum of its own and its neighbors’ state values. Provided the

weight matrix satisfies certain convergence conditions, the state values asymptotically converge to the

average of the measurements, but the convergence is generally slow, impeding the practical application

of these algorithms. In order to improve the rate of convergence, we propose a novel method where

each node employs a linear predictor to predict future node values. The local update then becomes

a convex (weighted) sum of the original consensus update and the prediction; convergence is faster

because redundant states are bypassed. The method is linear and poses a small computational burden.

For a concrete theoretical analysis, we prove the existence of a convergent solution in the general case

and then focus on one-step prediction based on the current state, and derive the optimal mixing parameter

in the convex sum for this case. Evaluation of the optimal mixing parameter requires knowledge of the

eigenvalues of the weight matrix, so we present a bound on the optimal parameter. Calculation of this

bound requires only local information. We provide simulation results that demonstrate the validity and

effectiveness of the proposed scheme. The results indicate that the incorporation of a multi-step predictor

can lead to convergence rates that are much faster than those achieved by an optimum weight matrix in

the standard consensus framework.
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I. INTRODUCTION

In both wireless sensor and peer–to–peer networks, there is interest in simple protocols for computing

aggregate statistics [1], [2], [3], [4]. Distributed average consensus is the task of calculating the average of

a set of measurements made at different locations through the exchange of local messages. The goal is to

avoid the need for complicated networks with routing protocols and topologies, but to ensure that the final

average is available at every node. Distributed average consensus algorithms, which involve computations

based only on local information, are attractive because they obviate the need for global communication

and complicated routing, and they are robust to node and link failure. The roots of these algorithms can

be traced back to the seminal work of Tsitsiklis [5], and there has been renewed interest because of

their applicability in sensor networks [6], [7]. The algorithms can play an important role in agreement

and synchronization tasks in ad-hoc networks [8] and also are good approaches for load balancing (with

divisible tasks) in parallel computers [9], [10]. More recently, they have also been applied in distributed

coordination of mobile autonomous agents [11] and distributed data fusion in sensor networks [12], [13],

[14], [15].

In this paper we focus on a particular class of distributed iterative algorithms for average consensus:

each node initializes its “state” to the local measurement, and then at each iteration of the algorithm,

updates its state by adding a weighted sum of the local nodes [5], [12], [13], [16]. The algorithms

in this class are time-independent, and the state values converge to the average of the measurements

asymptotically [6]. The class is attractive because the algorithms are completely distributed and the

computation at each node is very simple. The major deficiency is the relatively slow rate of convergence

towards the average; often many iterations are required before the majority of nodes have a state value

close to the average. In this paper, we address this deficiency, proposing a method that significantly

improves the rate of convergence without sacrificing the linearity and simplicity.

A. Related Work

The convergence rate of distributed average consensus algorithms has been studied by several au-

thors [6], [7]. Xiao, Boyd and their collaborators have been the main contributors of methods that strive

to accelerate consensus algorithms through optimization of the weight matrix [6], [12], [17]. They showed

that it is possible to formulate the problem of identifying the weight matrix that satisfies network topology

constraints and minimizes the (worst-case) asymptotic convergence time as a convex semidefinite opti-

mization task. This can be solved using a matrix optimization algorithm. Although elegant, the approach

has two disadvantages. First, the convex optimization requires substantial computational resources and
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can impose delays in configuration of the network. If the network topology changes over time, this can

be of particular concern. Second, a straightforward implementation of the algorithm requires a fusion

centre that is aware of the global network topology. In particular, in the case of on-line operation and a

dynamic network topology, the fusion centre needs to re-calculate the optimal weight matrix every time

the network topology changes. If such a fusion centre can be established in this situation, then the value

of a consensus algorithm becomes questionable. To combat the second problem, Boyd et al. propose the

use of iterative optimization based on the subgradient algorithm. Calculation of the subgradient requires

knowledge of the eigenvector corresponding to the second largest eigenvalue of the weight matrix. In

order to make the algorithm distributed, Boyd et al. employ decentralized orthogonal iterations [18], [17]

for eigenvector calculation. The resulting algorithm, although distributed, is demanding in terms of time,

computation and communication, because it essentially involves two consensus procedures.

Xiao and Boyd [6] also identify a suboptimal approach that leads to a much less demanding algorithm.

In this approach, neighbouring edge weights are set to a constant, and the constant is optimized. The

optimal constant is inversely proportional to the sum of the largest and the second smallest eigenvalues

of the Laplacian spectrum. The calculation thus still requires knowledge of the connectivity pattern. The

resultant weight matrix is called the ‘best constant’ weight matrix in [6]. The suboptimality of the best

constant weight matrix stems from the fact that all the edge weights are constrained to be the same.

Also related to our proposed approach is the methodology proposed by Sundaram and Hadjicostis

in [19]. Their algorithm achieves consensus in a finite number of time steps, and constitutes an optimal

acceleration for some topologies. The disadvantage of the approach is that each node must know the

complete weight matrix (and its powers), retain a history of all state values, and then solve a system of

linear equations. Again, this disadvantage is most consequential in the scenario where nodes discover

the network online and the topology is dynamic, so that the initialization operation must be performed

frequently. However, even in the simpler case of a static topology, the overhead of distributing the required

initialization information can diminish the benefits of the consensus algorithm unless it is performed

many times. In contrast, our proposal maintains the local, sequential and linear properties of the standard

consensus approach. Cao et. al. propose an acceleration framework for gossip algorithms observing their

similarity to the power method [20]. Their framework is based on the use of the weighted sum of

shift registers storing the values of local gossip iterations. Although this framework is close to the one

proposed in this paper, there are a number of points that make our proposal valuable. First, the approach

in [20] utilizes the weight vector, but authors do not provide any solutions or directions for the weight

vector design or optimization. Our approach, in its simplest form, optimizes a single parameter and we
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demonstrate the optimal analytical solution for this parameter and the advantages our approach brings

over the ones proposed in the literature. Second, the authors theoretically prove that if their algorithm

converges then it converges to the true consensus value [20]. We provide a stronger theoretical guarantee:

We prove that there always exists a set of algorithm parameters that leads to convergence to consensus.

The idea of using higher order eigenvalue shaping filters has also appeared in [15], but the optimal choice

of the filter parameters is still an open question.

B. Summary of Contributions

In this paper, we propose accelerating the convergence rate of a distributed average consensus algo-

rithms by changing the state update to a convex combination of the standard consensus iteration and a

linear prediction. We present a general framework and prove the existence of a solution, but focus on the

special case of one-step prediction based only on the current state to gain further insight. For this case,

we derive the optimal convex combination parameter, i.e., the parameter which maximizes the worst-case

asymptotic convergence rate. Since optimization of the parameter requires knowledge of the second largest

and smallest eigenvalues of the weight matrix, we derive a suboptimal setting that requires much less

information and is more readily implementable in a distributed setting. In the more general case of multi-

step predictors, we generate bounds on the convex combination parameter that guarantee convergence

of the consensus algorithm, but note that these are tighter than necessary. We report simulation results

evaluating the behaviour of the optimal and suboptimal approaches. It also emerges that the proposed

approach, when employing a multi-step predictor, has the potential to significantly outperform the standard

consensus approach using the optimal weight matrix.

C. Paper Organization

The remainder of this paper is organized as follows. Section II introduces the distributed average

consensus problem and formulates the proposed framework to improve the rate of convergence. Sec-

tion III describes the proposed algorithm and derives sufficient conditions on the mixing parameter for

convergence to consensus. Section IV focuses on the special case of one-step prediction based only

on the current state and provides an expression for the optimal mixing parameter. It also explores the

improvement that is achieved in the convergence rate and describes a suboptimal, but effective and

practical, approach for setting the mixing parameter. We report the results of numerical examples testing

the proposed algorithms in Section V. Finally, Section VI concludes the paper.
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II. PROBLEM FORMULATION

This section formulates the distributed average consensus task and briefly reviews the standard algo-

rithms, as described in [5], [6]. We define a graph G = (V, E) as a 2–tuple, consisting of a set V with

|V| = N vertices, where | · | denotes the cardinality, and a set E with |E| edges. We denote an edge

between vertices i and j as an unordered pair {i, j} ∈ E . The presence of an edge between two vertices

indicates that they can establish bidirectional noise–free communication with each other. We assume that

transmissions are always successful and that the topology is fixed. We assume also connected network

topologies; the connectivity pattern of the graph is given by the N × N adjacency matrix Φ = [Φij ],

where

Φij =

 1 if {i, j} ∈ E

0 otherwise
. (1)

Denote the neighborhood of node i by Ni , {j ∈ V : {i, j} ∈ E}, and the degree of node i by di , |Ni|.

We consider the set of nodes of a network (vertices of the graph), each with an initial real valued

scalar xi(0), where i = 1, 2, . . . , N . Let 1 denote the vector of ones. The goal is to develop a distributed

iterative algorithm that computes, at every node in the network, the value x , (N)−11Tx(0). In this

paper we focus on a particular class of iterative algorithms for distributed average consensus. In this

class, each node updates its state by adding a weighted sum of the local nodes, i.e.,

xi(t+ 1) = Wiixi(t) +
∑
j∈Ni

Wijxj(t) (2)

for i = 1, 2, . . . , N and t = 0, 1, . . .. Here Wij is a weight associated with the edge {i, j} and N is the

total number of nodes. These weights are algorithm parameters [12], [13]. Moreover, setting Wij = 0

whenever Φij = 0, the distributed iterative process reduces to the following recursion

x(t+ 1) = Wx(t) (3)

where x(t) denotes the state vector. The weight matrix, W, needs to satisfy the following necessary and

sufficient conditions to ensure asymptotic average consensus [16]:

W1 = 1, 1TW = 1T, ρ(W − J) < 1 (4)

where J is the averaging matrix

J =
1
N

11T (5)

and ρ(·) denotes the spectral radius of a matrix:

ρ(W) , max
i
{|λi| : i = 1, 2, . . . , N}. (6)
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Here {λi}Ni=1 denote the eigenvalues of W. Algorithms have been identified for generating weight

matrices that satisfy the required convergence conditions if the underlying graph is connected, e.g.,

Maximum–degree and Metropolis weights [16], [12].

In the next section, we describe our approach to accelerate the consensus algorithm. The approach is

based on the observation that in the standard consensus procedure [6] the individual node state values

converge in a smooth fashion. This suggests that it is possible to predict with good accuracy a future local

node state based on past and current values. Combining such a prediction with the consensus operation

thus has the potential to drive the overall system state closer to the true average at a faster rate than the

standard consensus algorithm. Effectively, the procedure bypasses redundant states.

III. ACCELERATING DISTRIBUTED AVERAGE CONSENSUS FOR AN ARBITRARY WEIGHT MATRIX

This section describes the acceleration methodology. We first discuss the general form of the accelera-

tion method. The primary parameter in the algorithm is the mixing parameter, α, which determines how

much weight is given to the predictor and how much to the consensus operator. For the general case, we

derive sufficient conditions on this parameter to ensure convergence to the average.

A. Predictor-based Distributed Average Consensus

Computational resources available at the nodes are often scarce and it is desirable that the algorithms

designed for distributed signal processing are computationally inexpensive. We are therefore motivated

to use a linear predictor, thereby retaining the linear nature of the consensus algorithm.

In the proposed acceleration, we modify the state-update equations at a node to become a convex

summation of the predictor and the value derived by application of the consensus weight matrix:

xi(t) = αxP
i (t) + (1− α)xW

i (t) (7a)

xW
i (t) = Wiixi(t− 1) +

∑
j∈Ni

Wijxj(t− 1) (7b)

xP
i (t) = θMx

W
i (t) +

M−1∑
j=1

θjxi(t−M + j) (7c)

Here ΘM,k = [θ1, . . . , θM ] is the vector of predictor coefficients.

The network–wide equations can then be expressed in matrix form by defining

W(M)
[α] , (1− α+ αθM )W + αθM−1I (8)

X(t− 1) , [x(t− 1)T ,x(t− 2)T ,x(t− 3)T , . . . ,x(t−M + 2)T ,x(t−M + 1)T ]T (9)
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where I is the identity matrix of the appropriate size and

W+ ,



W(M)
[α] αθM−2I αθM−3I . . . αθ2I αθ1I

I 0 0 . . . 0 0

0 I 0 . . . 0 0

. . . . . . . . . . . . . . . . . .

0 0 0 . . . I 0


(10)

Here all the components of the block matrix are N × N . We adopt the convention that for t < 0,

x(t) = x(0). The update equation is then simply X(t) = W+X(t− 1).

We adopt a time-invariant extrapolation procedure. The advantage of this approach is that the coeffi-

cients can be computed off-line as they do not depend on the data. We employ the best linear least-squares

k-step predictor that extrapolates current state xi(t) of the ith node k time steps forward. Choosing higher

k implies a more aggressive prediction component to the algorithm. The prediction coefficients become

(see the detailed derivation in Appendix A):

ΘM,k = A†TAk (11)

where

A ,

−M + 1 . . . −1 0

1 . . . 1 1

T , (12)

Ak , [k, 1]T and A† is the Moore-Penrose pseudoinverse of A. Appendix A provides general expressions

for the parametes ΘM,k.

It can be seen from (11) that xP
i (t) is a linear combination of M previous local consensus values.

Thus the consensus acceleration mechanism outlined in equations (7a–7c) is fully local if it is possible

to find an optimum value of α in (7a) that does not require any global knowledge.

B. Convergence of Predictor-based Consensus

In this section we provide a result that characterizes a range of α values that achieve convergence to

the consensus for arbitrary, finite, values of M . Let λ(i) denote the i–th ranked eigenvalue. The main

result is the following theorem:

Theorem 1. If W is symmetric, satisfies the conditions for asymptotic consensus (4),
∑M

i=1 θi = 1, and

0 ≤ α < min

(
1− |λ(N)|

−|λ(N)|+ |θM ||λ(N)|+
∑M−1

j=1 |θj |
,

1− |λ(2)|
−|λ(2)|+ |θM ||λ(2)|+

∑M−1
j=1 |θj |

)
(13)
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then the general accelerated consensus algorithm achieves asymptotic convergence.

Proof: See Appendix B for a proof.

The first condition of the theorem is satisfied by the choice of predictor weights we have outlined, and

the second condition specifies the bounds on the mixing parameter α. This is only a sufficient condition

for convergence, but it does indicate that there is a range of values of α for every M that leads to

asymptotic convergence. Significant improvements in the rate of convergence are generally achieved by

α values outside the identified range due to the conservative nature of the proof.

IV. ONE-STEP PREDICTOR BASED DISTRIBUTED AVERAGE CONSENSUS

In order to better understand the algorithm, we analyze the important case when the algorithm (7) is

based only on the current node states. For this case, we derive, in this section, the mixing parameter

that leads to the optimal improvement of worst-case asymptotic convergence rate, and we characterize

this improvement. Evaluating the optimal value requires knowledge of the second-largest and smallest

eigenvalues, which can be difficult to determine. We therefore derive a bound on the optimal α value

which requires less information; setting α to this bound results in close-to-optimal performance.

The predictor under consideration is a one-step extrapolator based on the current node state and the

result of the standard consensus operator, i.e., k = 1 and M = 2. In this case ΘM = [−1, 2]T , so xP
i (t)

can be expressed as follows:

xP
i (t) = 2xW

i (t)− xi(t− 1). (14)

We can estimate the gradient of the state with respect to time as ∇̂xi(t) , xW
i (t)− xi(t− 1). Thus (14)

can be rewritten as:

xP
i (t) = xW

i (t) + ∇̂xi(t). (15)

The one–step predictor hence updates the current state in the gradient direction, to within estimation

error.

Substituting (14) into (7a) we obtain the following expression for xi(t):

xi(t) = α(2xW
i (t)− xi(t− 1)) + (1− α)xW

i (t) (16)

= xi(t− 1)((1 + α)Wii − α) + (1 + α)
∑
j∈Ni

Wijxj(t− 1). (17)

This can be written in matrix form as:

x(t) = W[α]x(t− 1) (18)
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where W[α] = W(2)
[α] is the weight matrix (as a function of α):

W[α] , (1 + α)W − αI (19)

It is obvious from the previous equatioin that the predictor based weight matrix W[α] has the same

eigenvectors as W and its eigenvalues are related to the eigenvalues of the original matrix W via the

relationship:

λ(i)[α] = (1 + α)λ(i) − α i = 1, . . . , N (20)

The following proposition describes some properties of the weight matrix W[α]. We show that if the

original weight matrix W satisfies the conditions necessary for asymptotical convergence, then W[α]

also guarantees asymptotical convergence to consensus under some mild conditions.

Proposition 1. Suppose W satisfies the necessary conditions for the convergence of the standard con-

sensus algorithm. Moreover, let λ(1) ≥ λ(2) ≥ . . . ≥ λ(N) denote the eigenvalues associated with

eigenvectors u(1),u(2), . . . ,u(N) and let λ(i)[α] denote the ranked eigenvalues of W[α]. Then W[α]

satisfies the required convergence conditions if

0 ≤ α <
1 + λ(N)

1− λ(N)
. (21)

Proof: See Appendix C.

Proposition 1 implies that the eigenvalues of the predictor based weight matrix W[α] experience a left

shift with respect to the eigenvalues of the original weight matrix W when α > 0. Moreover, it is easy

to show that the ordering of the eigenvalues does not change during the shift:

λ(i) ≤ λ(j) ⇒ λ(i)[α] ≤ λ(j)[α] (22)

for all i, j, α ≥ 0, where i and j are associated with some eigenvectors ui, uj of W. The second

largest and the smallest eigenvalues of matrix W[α] always correspond to the second largest and the

smallest eigenvalues of matrix W, and their values are always smaller. Using this property, together

with the definition of spectral radius (6), it is possible to formulate the problem of optimizing the mixing

parameter to achieve the fastest asymptotic worst-case convergence rate as a convex optimization problem.

In the following subsection, we outline this formulation and provide the closed-form solution.

A. Optimization of The Mixing Parameter

Recall that α is the mixing parameter that determines the relative influences of the standard consensus

iteration and the predictor in (7a). In the following, we consider optimization of α to achieve the fastest
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possible worst-case asymptotic convergence rate for the M = 2, k = 1 case of the accelerated consensus

algorithm.

The spectral radius ρ(W[α]−J) defines the worst–case measure of asymptotic convergence rate [16].

In fact, the spectral radius is directly related to the asymptotic convergence rate as defined in [6]:

r(W) , ρ(W[α]− J) = sup
x(0) 6=Jx(0)

lim
t→∞

(
‖x(t)− Jx(0)‖
‖x(0)− Jx(0)‖

)1/t

. (23)

Thus the minimization of the spectral radius ρ(W[α]−J) leads to the maximization of the convergence

rate, or equivalently, to the minimization of the asymptotic convergence time:

τasym ,
1

log(1/ρ(W[α]− J))
. (24)

Theorem 2. The M = 2, k = 1 case of the proposed accelerated consensus algorithm has the fastest

asymptotic worst–case convergence rate if the value of the mixing parameter α equals the following

optimum value:

α∗ =
λ(N) + λ(2)

2− λ(N) − λ(2)
(25)

where λ(i) denotes the eigenvalues of the weight matrix W.

Proof: See Appendix D.

As expected, the optimal mixing parameter α∗ satisfies the following:

α∗ <
1 + λ(N)

1− λ(2) + 1− λ(N)
(26)

<
1 + λ(N)

1− λ(N)
(27)

where both the first and second lines follow from the fact that 0 ≤ λ(2) < 1, respectively. We can

conclude that the optimal mixing parameter satisfies the required convergence conditions for all cases.

Remark 1. Algebraic manipulations lead to the following equality:

|λ(N)[α
∗]| =

λ(2) − λ(N)

2− λ(2) − λ(N)
= λ(2)[α

∗]. (28)

The optimal mixing parameter thus induces a shift in the eigenvalues so that the magnitudes of the second-

largest and smallest eigenvalues of W[α] are balanced. A similar effect is observed in the optimization

conducted in [6]. It should be noted however, that even with the optimal choice of α the proposed

algorithm for M = 2 case cannot outperform global optimization proposed in [6].
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B. Convergence Rate Analysis

To see to what extent the proposed one-step extrapolation algorithm yields performance improvement

over the conventional consensus procedure, we consider the ratio of the spectral radius of the correspond-

ing matrices. This ratio gives the lower bound on performance improvement:

γ[α] ,
ρ(W − J)
ρ(W[α]− J)

=
λ(2)

max{λ(2)[α], |λ(N)[α]|}
(29)

The following proposition considers the provided convergence rate improvement over the standard con-

sensus algorithm when the optimal mixing parameter is utilized.

Proposition 2. In the optimal case, i.e., when α = α∗, the performance improvement factor is given by

γ[α∗] =
λ(2)(2− λ(2) − λ(N))

λ(2) − λ(N)
. (30)

Proof: Substituting α∗ into (29) and taking into account the fact that |λ(N)[α∗]| = λ(2)[α∗], after

some algebraic manipulations, yield the expression for γ[α∗].

Although (25) provides an expression for the optimum mixing factor resulting in the fastest asymptotic

convergence rate, the calculation of this optimum value requires knowledge of the second and the last

eigenvalues of matrix W. This in turn either requires knowledge of W or some centralized mechanism

for calculation and distribution of the eigenvalues of W. In many practical situations such information

may not be available. Therefore it is of interest to derive a suboptimum setting for α that results in less

performance gain but requires considerably less information at each node.

Proposition 3. The predictor based distributed average consensus has asymptotic worst-case convergence

rate faster than that of conventional consensus if the value of mixing parameter is in the following range:

0 < α ≤ α∗. (31)

Proof: The asymptotic worst-case convergence rate of algorithm (7) is faster than that of conventional

consensus algorithm if and only if γ[α] > 1 ⇒ ρ(W[α]−J) < ρ(W−J). We can rewrite this condition

in the following form: 
λ(2)(1 + α)− α

λ(2)
< 1

α(1− λ(N))− λ(N)

λ(2)
< 1

(32)

indicating that 
α(λ(2) − 1) < 0

α <
λ(2) + λ(N)

1− λ(N)

. (33)
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Observing that λ(2)−1 < 0, dividing the first part of (33) by λ(2)−1 and subtracting the same expression

from the denominator of the second part we obtain the tightened version of (33):

0 < α <
λ(N) + λ(2)

2− λ(N) − λ(2)
(34)

Finally, noting that the right hand side of this expression is equal to α∗ concludes the proof.

We strive to identify a setting for α that guarantees an improvement in the convergence rate but does

not require global knowledge of the weight matrix. Based on Proposition 3, if we lower-bound α∗, then

setting α to this lower-bound will guarantee improvement in convergence rate. In order to lower-bound

α∗, we need to lower-bound λ(2) + λ(N). The next proposition provides such a bound in terms of the

trace of the weight matrix W.

Proposition 4. If the weight matrix W satisfies the convergence conditions and its eigenspectrum is a

convex function of the eigenvalue index, namely,

λ(i) ≤
N − i

N − 2
λ(2) +

i− 2
N − 2

λ(N), 2 ≤ i ≤ N (35)

then

λ(2) + λ(N) ≥ ξ ,
2(tr(W)− 1)

N − 1
(36)

where tr(·) denotes the trace of its argument.

Proof: Recall that the sum of eigenvalues of a matrix is equal to its trace:
N∑
i=1

λi =
N∑
i=1

λ(i) = tr(W) (37)

Noting that λ(1) = 1 and rearranging the summation give

N∑
i=2

λ(i) = tr(W)− 1. (38)

Since, by assumption, the eigenspectrum is a convex function of the eigenvalue index, we have:

(λ(2) + λ(N))(N − 1)
2

≥
N∑
i=2

λ(i) (39)

Substituting (38) into (39) results in the desired bound.

Proposition 4 leads to an upper bound for a setting of the mixing parameter α in order to achieve

convergence at an improved rate:

α ≤ ξ

2− ξ
, Λ(ξ). (40)
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The advantage of this setting is that it is much simpler to calculate the trace tr(W) in a distributed

fashion than derive all of the eigenvalues, as required for determining the optimum mixing parameter.

The lower bound depends linearly on the average of the diagonal terms of the matrix W, which

can be calculated using a standard consensus procedure. Although the result is useful and leads to a

simpler mechanism for setting the mixing parameter, the convexity assumption is strong and is probably

unnecessary for many topologies.

C. Random geometric graphs: choice of the mixing parameter

We now consider the special, but important, case of random geometric graphs, which can act as good

topological models of wireless sensor networks, one of the promising application domains for consensus

algorithms. For this case, we show that there exists an asymptotic upper bound Λ(ξ∞) for α that can be

calculated off–line. The random geometric graph is defined as follows: n nodes (vertices) are distributed

in an area D according to a point process with known spatial distribution px,y(x, y). Two nodes i and

j are connected, i.e. Φij = 1, if the Euclidean distance ri,j between them is less then some predefined

connectivity radius rc. The indicator function I{r2i,j ≤ r2c} = 1 whenever r2i,j ≤ r2c holds.

We consider weight matrices W constructed according to a rule of the following form: Wij = I{r2i,j ≤ r2c}L(di, dj), i 6= j

Wij = 1−
∑N

j=1,j 6=iWij , i = j
(41)

where L(di, dj) is some function of the local connectivity degrees di and dj of nodes i and j satisfying:

N∑
j=1

I{r2i,j ≤ r2c}L(di, dj) = 1

|L(di, dj)| < 1

(42)

Let us introduce random variables ζi,N defined by:

ζi,N =
N∑

j=1,j 6=i
I{r2i,j ≤ r2c}L(di, dj) . (43)

Assume that L(di, dj) is chosen so that these variables are identically distributed with mean E{ζi,N} =

E{ζ} and covariance structure satisfying∑
N∈N+

σN
N

√
RN−1 +

σ2
N

N2
<∞ (44)
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where RN and σN are defined as follows:

RN ,
1
N2

N∑
i=1

N∑
j=1

E{(ζi,N − E{ζi,N})(ζj,N − E{ζj,N})} (45)

σ2
N , E{(ζi,N − E{ζi,N})2} (46)

For such a graph and weight matrix, the following theorem provides an asymptotic upper bound on the

value of mixing parameter α in terms of the expectation E{ζ}.

Theorem 3. Let W be the N × N weight matrix constructed according to (41). Suppose L(di, dj) is

chosen so that the random variables ζi,N defined by (43) are identically distributed with finite mean E{ζ}

and covariance structure satisfying (44). Then the lower bound on λ(2) + λ(N) given by Proposition 4

almost surely converges to

ξ∞ , lim
N→∞

ξ
a.s.−→

N→∞
2(1− E{ζ}) (47)

and defines an asymptotic upper bound on α as N →∞ given by the following expression:

α
a.s.
≤

N→∞
Λ(ξ∞) (48)

Proof: See Appendix E.

The above result relies on the assumption that L(di, dj) satisfies the conditions discussed above.

The following proposition states that this assumption holds for the popular max–degree weight design

scheme [12], [16]. The max–degree weights are very simple to compute and are well suited for distributed

implementation. In order to determine the weights, the nodes need no information beyond their number

of neighbours.

Proposition 5. If the weights in the weight matrix W are determined using the max–degree weight

approach, then assumptions of Theorem 3 hold and the asymptotic bound ξ∞ on λ(2) + λ(N) satisfies:

ξMD
∞

a.s.−→
N→∞

2(1− p) (49)

and

Λ(ξMD
∞ ) =

1− p

p
. (50)

where p is the probability that two arbitrary nodes in a network are connected.

Proof: See Appendix F for the proof.

We note that p can be analytically derived for a given connectivity radius if the spatial distribution

of the nodes is uniform [21]. Proposition 5 implies that for a random geometric graph with max-degree
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(a) The convergence times for algorithms based on

maximum-degree weight matrices as a function of the

number of nodes in the network. Following algorithms

were simulated. Standard Consensus (MD): 4; Accel-

erated consensus with optimal α (MD–O2): +; Ac-

celerated consensus with suboptimal α (MD–S2): ×;

Accelerated consensus with asymptotic suboptimal α

(MD–SA2): ◦; Best Constant [6] (BC): ♦; and Optimal

Weight Matrix [6] (OPT): �
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(b) The convergence times for algorithms based on

Metropolis-Hastings weight matrices as a function of

the number of nodes in the network. The following

algorithms were simulated: Standard Consensus (MH):

4; Accelerated consensus with optimal α (MH–O2):

+; Accelerated consensus with suboptimal α (MH–S2):

×; Best Constant [6] (BC): ♦; and Optimal Weight

Matrix [6] (OPT): �

Fig. 1. The asymptotic convergence time versus the number of nodes in the network. In (a), the standard and accelerated

consensus algorithms are derived from the maximum-degree weight matrix; in (b) they are derived from the Metropolis-Hastings

weight matrix.

weights α should be chosen to satisfy α ≤ (1 − p)/p. This result indicates that for highly connected

graphs, which have a large value of p, a small α is desirable. For these graphs, standard consensus

achieves fast mixing, so the prediction becomes less important and should be assigned less weight. In the

case of a sparsely connected graph (small p), a large α is desirable. For these graphs, the convergence

of standard consensus is slow because there are few connections, so the prediction component of the

accelerated algorithm should receive more weight.

V. NUMERICAL EXAMPLES

In our simulation experiments, we consider a set of N nodes uniformly distributed on the unit square.

The nodes establish bidirectional links to each other if the Euclidean distance between them is smaller

than the connectivity radius,
√

logN/N . Initial node measurements are generated as x = θ + n where

θ = 1 and n is Gaussian distributed with σ = 1. Then, we regularize the data such that the average of

all the values, x, equals to 1. All simulation results are generated based on 500 trials (a different random
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(a) MSE as a function of time step when the number

of nodes N = 25
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(b) MSE as a function of time step when the number

of nodes N = 50

Fig. 2. Mean-squared-error (MSE) versus time step for the proposed and standard consensus algorithm. The upper panel depicts

the results when the number of nodes in the network N = 25, and the lower panel depicts the results when N = 50. The

following algorithms were simulated. Standard consensus (MH): 4; Accelerated consensus, M = 2 with optimal α (MH–O2):

+; Accelerated consensus M = 2 with suboptimal α (MH–S2): ×; Accelerated consensus M = 3 (MH–O3): B; Best Constant

(BC): ♦; and optimal weight matrix (OPT): �

graph is generated for each trial).

First, we compare the asymptotic convergence time (24) results of the algorithm we propose for the

theoretically analyzed M = 2 and k = 1 case, against the algorithms presented in [6]. Fig. 1 compares the

convergence times of the algorithms for the M = 2 and k = 1 case as a function of the number of nodes

in the network. In Fig. 1(a), the maximum-degree weight matrix is used as the consensus operator for

the standard and accelerated consensus algorithms; in Fig. 1(b), the Metropolis-Hastings weight matrix

acts as the consensus operator. It is clear from Fig. 1 that although our algorithm is extremely simple

and does not require any global optimization, it achieves performance improvements approaching those

of the optimum algorithm from [6]. It outperforms the best constant algorithm when used in conjunction

with the Metropolis–Hastings weight matrix. When Max–degree is utilized in the proposed algorithm,

its asymptotic convergence time is very similar to that of the optimized best constant approach from [6]

for the optimal choice of α. Fig. 1(a) also suggests that the asymptotic upper bound on α derived for

a random geometric graph with maximum-degree weight matrix is applicable when N is as low as

20. The two curves corresponding to the bound based on the trace of weight matrix (40) (represented

by ×) and the asymptotic upper bound developed in Proposition 5, (48) (represented by ◦) are almost

indistinguishable.
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(a) Number of iterations is 50, number of nodes is 50
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(b) Number of iterations is 100, number of nodes is 50

Fig. 3. The mean-squared-error (MSE) at (a) iteration number 50, and (b) iteration number 100, as a function of the number

of samples M used in the predictor. Results are depicted for one-, two- and three-step predictors (k = 1, 2, 3).

Since the performance of all algorithms is superior when the Metropolis–Hastings weight matrix is

employed, the remainder of our simulations focus on this case. Fig. 2 shows the mean-squared-error (MSE)

as a function of time for the standard, accelerated, best-constant and optimal weight matrix consensus

algorithms. Three versions of the accelerated algorithm are depicted, including the M = 2, k = 1 case

with optimal and suboptimal α, and the M = 3, k = 1 case. The number of nodes is 25 in Fig. 2(a) and

50 in Fig. 2(b). Since we have not developed a methodology for choosing an optimal setting for α when

M > 2, we adopted the following procedure to choose α for the M = 3 and k = 1 case. For each trial,

we evaluated the MSE for each value of α ranging from 0 to 1 at intervals of 0.1. We then chose the α

that resulted in the lowest MSE for each trial at timestep 50. This represents a practically unachievable

oracle α, so we stress that the purpose of the experiment is to illustrate the potential of the acceleration

procedure. We do however observe that the random generation of the data has very little influence on

the α value that is selected; it is the random graph and hence the initial W matrix that governs the

optimal value of α. This suggests that it is possible to develop a data-independent procedure to choose

an optimal (or close-to-optimal) α value. Fig. 2 indicates that the accelerated consensus algorithm with

M = 2 and k = 1 achieves step-wise MSE decay that is close to that obtained using the optimal weight

matrix developed in [6]. The accelerated algorithm with M = 3 and k = 1 significantly outperforms

the optimal weight matrix [6] in terms of step-wise MSE decay. The M = 3 case permits much more

accurate prediction, which leads to the significant improvement in performance.

Finally, we compare the performance of our algorithm in terms of MSE decay for different values of k
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and M ≥ 2. The results of the simulation are shown in Fig. 3. At this point we do not have expressions

for the optimum value of α in the more general case when M > 2. We use the same procedure as

outlined in the previous experiment, evaluating the MSE for each possible value of α from 0 to 1 at

intervals of 0.1 and selecting the one that achieves the minimum MSE. Fig. 3 implies that in our setting

where parameters Θ are given by formula (60) the best performance is obtained if M = 3 is used and

the performance difference is significant. Our choice of predictor exerts a significant influence here. We

employ a linear parameterization that becomes less accurate as the number of samples employed in the

predictor increases beyond 3. Note, however, that all of the depicted values of M > 2 achieve better

performance than the optimal weight matrix. Although one might anticipate that there is an optimal k for

each M that maximizes the convergence rate, our simulation experiments indicate that the value of k has

little or no effect on convergence (see Fig. 3). Indeed, for the case M = 2, we can show analytically that

the spectral radius of the equivalent weight matrix, which dictates the convergence rate, is independent

of k [21].

VI. CONCLUDING REMARKS

We have presented a general, predictor–based framework to improve the rate of convergence of

distributed average consensus algorithms. In contrast to previous acceleration approaches, the proposed

algorithm is simple, fully linear, and parameters can be calculated offline. To gain further insight into

the proposed algorithm, we focused on the special case of prediction based only on the current state,

presenting theoretical and simulation results. In its most simple form, the proposed algorithm outperforms

the optimal best constant algorithm from [6] and performs almost as well as the worst–case–optimal design

algorithm of [6]. Simulation studies show that the proposed algorithm has the potential to outperform

significantly the worst–case–optimal algorithm, if a suitable setting for the mixing parameter α can be

identified. In future work, we plan to formulate the choice of α for the general case as an optimization

problem, and examine the behaviour of the solutions. We hope that this will lead to practical schemes

for setting α that guarantee convergence and achieve a convergence rate acceleration close to optimal.

APPENDIX A

GENERAL EXPRESSIONS FOR PREDICTOR WEIGHTS FOR ARBITRARY M AND k

In this appendix we present the expressions for the predictor weights ΘM,k in (11) as a function of

algorithm parameters and previous states for the case of arbitrary M and k.
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Fig. 4. Linear approximation to the model generating available data comprising linear predictor

First, we present the rationale behind the design of weights ΘM,k. As shown in Fig. 4, given the set

of previous values at some time instant t0 and node i, xi(t0 −M + 1 : t0) = [xi(t0 −M + 1), xi(t0 −

M + 2), . . . , xi(t0 − 1), xW
i (t0)]T we would like to design the best linear least squares approximation to

the model generating the available data. Then using the approximate model we would like to extrapolate

the current state k time steps forward. The easiest way to do this is to note that the approximate model

of the form x̂i(t) = at+ b with a and b being the parameters of the linear model can be rewritten in the

matrix form for the set of available data:

x̂i(t0 −M + 1 : t0) = At0−M+1:t0ψ. (51)

Here

At0−M+1:t0 =



t0 −M + 1 1

t0 −M + 2 1

. . . . . .

t0 − 1 1

t0 1


and ψ = [a, b]T (52)

Using the standard least squares technique we define the cost function

I(ψ) = (xi(t0 −M + 1 : t0)− x̂i(t0 −M + 1 : t0))T (xi(t0 −M + 1 : t0)− x̂i(t0 −M + 1 : t0))

(53)

= (xi(t0 −M + 1 : t0)−At0−M+1:t0ψ)T (xi(t0 −M + 1 : t0)−At0−M+1:t0ψ) (54)

and find the optimal approximate linear model ψ̂ as the global minimizer of the cost function:

ψ̂ = arg min
ψ
I(ψ) (55)
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Taking into account the convexity of the cost function and equating the derivative of I(ψ) with respect

to ψ to zero we get the solution:

ψ̂ = (AT
t0−M+1:t0At0−M+1:t0)

−1AT
t0−M+1:t0xi(t0 −M + 1 : t0). (56)

Now, given the linear approximation of the model generating current data, we extrapolate the current

state k steps forward using At0+k = [t0 + k, 1]:

xP
i (t0 + k) = At0+kψ̂ = At0+k(A

T
t0−M+1:t0At0−M+1:t0)

−1AT
t0−M+1:t0︸ ︷︷ ︸

ΘT
M,k(t0)

xi(t0 −M + 1 : t0). (57)

Finally, noting the time invariance of predictor weights ΘT
M,k(t0), that is ΘT

M,k(t0) = ΘT
M,k(0),∀t0, we

substitute At0−M+1:t0 and At0+k by their time-invariant analogs A and Ak as defined in (11) and (12).

Second, we need an expression for the pseudoinverse A†. From the definition of A in (12) we can

derive the inverse of ATA in closed form:

(ATA)−1 =
2

M(M + 1)

 6
M−1 3

3 2M − 1

 (58)

The expression for the pseudoinverse A† follows immediately:

A† = (ATA)−1AT =
2

M(M + 1)

 −6(M−1)
M−1 + 3 −−6(M−2)

M−1 + 3 · · · 3

−M + 3− 1 −M + 6− 1 · · · 2M − 1

 (59)

This results in the following expression for predictor weights:

ΘM,k = A†TAk+1 =
2

M(M + 1)



(
−6(M−1)

M−1 + 3
)
k −M + 3− 1(

−6(M−2)
M−1 + 3

)
k −M + 6− 1

...

3k + 2M − 1

 (60)

APPENDIX B

PROOF OF THEOREM 1: EXISTENCE OF A CONVERGENT SOLUTION IN THE GENERAL CASE

This appendix presents a proof of Theorem 1. We commence by introducing an operator V:

V =
W(M)

[α]

1−
∑M−2

i=1 αθi
=

(1− α+ αθM )W + αθM−1I

1−
∑M−2

i=1 αθi
(61)

Denoting ci = αθi, we can write the first component of network-wide state recursion X(t) = W+X(t−1)

as:

x(t) = (1− c1 − c2 − . . .− cM−2)Vx(t− 1) + cM−2x(t− 2) + . . .+ c1x(t−M + 1) (62)
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where we set x(t) = x(0) for any t < 0. Let us denote S = (1 − c1 − c2 − . . . − cM−2)||V − J|| and

β = S + |c1| + |c2| + . . . + |cM−2|. Here, as before, J denotes the averaging operator. The following

lemma provides the platform for the proof of the theorem, identifying sufficient conditions on α that

guarantee |β| < 1.

Lemma 1. If W is symmetric, satisfies the conditions for asymptotic consensus (4),
∑M

i=1 θi = 1, and

0 ≤ α < min

(
1− |λ(N)|

−|λ(N)|+ |θM ||λ(N)|+
∑M−1

j=1 |θj |
,

1− |λ(2)|
−|λ(2)|+ |θM ||λ(2)|+

∑M−1
j=1 |θj |

)
(63)

then |β| < 1.

Proof: Using the triangle inequality and the definitions of S and V, we can formulate a bound on

|β|:

|β| =

∣∣∣∣∣∣(1− c1 − c2 − . . .− cM−2)||V − J||+ α
M−2∑
j=1

|θj |

∣∣∣∣∣∣ (64)

≤ ||(1− α+ αθM )W + αθM−1I− J||+ α

M−2∑
j=1

|θj |. (65)

Thus if we ensure that this last expression is less than one, we guarantee that |β| < 1. We can reformulate

this inequality using the symmetry of W, I, J and the definition of the spectral radius of a matrix:

|(1− α+ αθM )λ(i) + αθM−1|+ α

M−2∑
j=1

|θj | < 1, ∀|λ(i)| < 1 (66)

Again applying the triangle inequality, we see that this relationship is satisfied if:

|1− α||λ(i)|+ α

|θM ||λ(i)|+
M−1∑
j=1

|θj |

 < 1, ∀|λ(i)| < 1 (67)

Upon expansion of the modulus |1− α|, and with algebraic manipulation, we arrive at:

0 < α < J (λ(i)) ,
1− |λ(i)|

−|λ(i)|+ |θM ||λ(i)|+
∑M−1

j=1 |θj |
, ∀|λ(i)| < 1 (68)

Now, let us examine the properties of the upper bound J (λ(i)) in (68). After some algebraic manip-

ulations the derivative of J (λ(i)) for the two cases λ(i) > 0 and λ(i) < 0 takes the following form:

∂

∂λ(i)
J (λ(i) : λ(i) > 0) =

1−
∑M

j=1 |θj |(
−λ(i) + |θM |λ(i) +

∑M−1
j=1 |θj |

)2

∂

∂λ(i)
J (λ(i) : λ(i) < 0) =

∑M
j=1 |θj | − 1(

λ(i) − |θM |λ(i) +
∑M−1

j=1 |θj |
)2

(69)
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Taking into account the fact that
∑M

j=1 |θj | ≥ 1 we can make the following conclusion:

∂

∂λ(i)
J (λ(i) : λ(i) > 0) ≤ 0, ∀λ(i)

∂

∂λ(i)
J (λ(i) : λ(i) < 0) ≥ 0, ∀λ(i)

(70)

Thus J (λ(i)) is nondecreasing when λ(i) < 0 and nonincreasing when λ(i) > 0. Hence if for any λ(j),

λ(k), and λ(i) satisfying |λ(j)| > |λ(i)| and |λ(k)| > |λ(i)| there exists an α∗ such that

0 < α∗ < min
(
J (λ(j)),J (λ(k))

)
(71)

then 0 < α∗ < J (λ(i)) and (13) follows. To ensure that such α∗ always exists for any |λ(j)| < 1 and

|λ(k)| < 1 we note that J (λ(j)) > 0, ∀|λ(j)| < 1. This follows because 1− |λ(j)| > 0. Moreover,

−|λ(i)|+ |θM ||λ(i)|+
M−1∑
j=1

|θj | ≥ −|λ(i)|+ |λ(i)|
M∑
j=1

|θj | (72)

≥ −|λ(i)|+ |λ(i)| = 0. (73)

We now present the proof of Theorem 1.

Theorem 1: We first show that if the conditions of the theorem hold, then the average is preserved at

each time step. To do this, it is necessary and sufficient to show that
((

1−
∑M−2

i=1 ci

)
V +

∑M−2
i=1 ciI

)
1 =

1 and 1T
((

1−
∑M−2

i=1 ci

)
V +

∑M−2
i=1 ciI

)
= 1T . We have:((

1−
M−2∑
i=1

ci

)
V +

M−2∑
i=1

ciI

)
1 = (1− α+ αθM )W1 + αθM−1I1 + α

M−2∑
i=1

θi1 (74)

=

(
1− α+ α

M∑
i=1

θi

)
1 = 1 (75)

The proof of the condition 1T
((

1−
∑M−2

i=1 ci

)
V +

∑M−2
i=1 ciI

)
= 1T is analogous and omitted.

We now show that x(t) converges to the average Jx(0). Our method of proof is induction. We show

that ||x(t)− Jx(0)|| ≤ β`+1||x(0)− Jx(0)|| where ` = b(t− 1)/(M − 1)c. Lemma 1 implies that if the

assumptions of the theorem are satisfied then |β| < 1, so the limit as t and consequently ` approaches

infinity is 0. Initially, we show that the result holds for ` = 0, or equivalently, t = 1 . . .M − 1. We have,
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using the triangle inequality and employing the result VJx(0) = Jx(0):

||x(1)− Jx(0)|| =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(0)− Jx(0)) +

M−2∑
i=1

ci(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣ (76)

≤

((
1−

M−2∑
i=1

ci

)
||V − J||+

M−2∑
i=1

|ci|

)
||x(0)− Jx(0)|| (77)

= β||x(0)− Jx(0)|| (78)

Similarly:

||x(2)− Jx(0)|| =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(1)− Jx(0)) +

M−2∑
i=1

ci(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣ (79)

≤

(
1−

M−2∑
i=1

ci

)
||V − J||||x(1)− Jx(0)||+

M−2∑
i=1

|ci|||x(0)− Jx(0)|| (80)

≤ ||x(0)− Jx(0)||

(
β

(
1−

M−2∑
i=1

ci

)
||V − J||+

M−2∑
i=1

|ci|

)
(81)

≤ β||x(0)− Jx(0)||, (82)

where to obtain the last inequality we use the fact that |β| < 1. Using the same observations we can

show the following for any n such that 2 < n < M :

||x(n)− Jx(0)|| =

∣∣∣∣∣
∣∣∣∣∣
(

1−
M−2∑
i=1

ci

)
(Vx(n− 1)− Jx(0)) (83)

+
n−1∑
i=2

cM−i(x(n− i)− Jx(0)) +
M−1∑
i=n

cM−i(x(0)− Jx(0))

∣∣∣∣∣
∣∣∣∣∣ (84)

≤

(
1−

M−2∑
i=1

ci

)
||V − J||||x(n− 1)− Jx(0)|| (85)

+
n−1∑
i=2

|cM−i|||x(n− i)− Jx(0)||+
M−1∑
i=n

|cM−i|||x(0)− Jx(0)|| (86)

≤ ||x(0)− Jx(0)||

(
β

(
1−

M−2∑
i=1

ci

)
||V − J||+ β

n−1∑
i=2

|cM−i|+
M−1∑
i=n

|cM−i|

)
(87)

≤ ||x(0)− Jx(0)||

((
1−

M−2∑
i=1

ci

)
||V − J||+

M−2∑
i=1

|ci|

)
(88)

≤ β||x(0)− Jx(0)||, (89)

By almost identical manipulations, we can show that if the result holds for `− 1 and t = (`− 1)(M −

1) + 1, . . . , (`− 1)(M − 1) +M − 1, then it holds for ` and t = `(M − 1) + 1, . . . , `(M − 1) +M − 1.
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APPENDIX C

PROOF OF PROPOSITION 1 : ASYMPTOTIC CONVERGENCE CONDITIONS OF THE PREDICTOR BASED

WEIGHT MATRIX

Proof: In order to ensure asymptotical convergence, we need to prove the following properties:

W[α]1 = 1, 1TW[α] = 1T , ρ(W[α]− J) < 1 (90)

It is clear from (19) that W[α] has the same eigenvectors as W. Eigenvalues of W[α] are connected to

the eigenvalues via (20) and we conclude that λ(1)[α] = 1. Thus the two leftmost equations in (90) hold

if W satisfies asymptotic convergence conditions. Now, let us consider the spectral radius of W[α]− J

defined as ρ(W[α]− J):

ρ(W[α]− J) , max{λ(2)[α], |λ(N)[α]|}. (91)

For α ≥ 0, the eigenvalues experience a left shift since λ(i)[α] = α(λ(i) − 1) + λ(i) and (λi − 1)

is always negative. It is also straightforward to see that λ(i) < λ(j) ⇒ λ(i)[α] < λ(j)[α], ∀i, j. This

implies that λ(N)[α] < λ(2)[α] < 1, so to ensure that ρ(W − J) < 1, we just need to make sure that

λ(N)[α] = α(λ(N) − 1)− α > −1. Rearrangement leads to α < 1+λ(N)

1−λ(N)
, the condition expressed in (21).

APPENDIX D

PROOF OF THEOREM 2: OPTIMAL MIXING PARAMETER FOR THE ONE-STEP PREDICTOR MATRIX

Proof: We need to show that α = α∗ is the global minimizer of ρ(W[α]−J). Hence we define the

following optimization problem:

α∗ = arg min
α
ρ(W[α]− J) = arg min

α
max
i6=1

(|λ(i)[α]|). (92)

However, this problem can be converted into a simpler one:

α∗ = arg min
α

max(|λ(N) − α(1− λ(N))|, |λ(2) − α(1− λ(2))|) (93)

since λ(N)[α] is the smallest and λ(2)[α] is the largest eigenvalue of (W[α]−J). Let us introduce f(α) =

λ(N)−α(1−λ(N)) and g(α) = λ(2)−α(1−λ(2)). Clearly |f(α)| and |g(α)| are piecewise linear convex

functions, with knots occurring where f(α) = 0 and g(α) = 0. Let these knots be αf = λ(N)/(1−λ(N))

and αg = λ(2)/(1− λ(2)). Since λ(N) < λ(2) the magnitude of slope of f(α) exceeds that of g(α) and
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αf < αg. Consider h(α) = max(|f(α)|, |g(α)|), which is also piecewise linear and convex with knots

α− and α+ occurring where f(α−) = g(α−) and f(α+) = −g(α+) respectively. Since h(α) is piecewise

linear and convex with h(∞) = ∞ and h(−∞) = ∞ its global minimum occurs at one of the knots.

It follows that the knots of h(α) satisfy α− < αf < α+ < αg. The fact that |g(α)| is decreasing if

α < αg implies g(α+) < g(α−). Hence the global minimum of h(α) occurs at α = α+. Thus solving

f(α+) = −g(α+) for α+ gives the solution for α∗ = α+.

APPENDIX E

RANDOM GEOMETRIC GRAPHS: PROOF OF THEOREM 3

Proof: By the construction of the weight matrix W (41) we can transform the expression for ξ (36)

as follows:

ξ =
2

N − 1
(tr(W)− 1) (94)

=
2N
N − 1

1
N

N∑
i=1

1−
N∑

j=1,j 6=i
Wij

− 2
N − 1

(95)

=
2(N − 1)
N − 1

− 2N
N − 1

1
N

N∑
i=1

N∑
j=1,j 6=i

I{r2i,j ≤ r2c}L(di, dj) (96)

= 2− 2
N − 1

N∑
i=1

ζi,N . (97)

In order to obtain the last equality we have used the definition (43). Note that I{r2i,j ≤ r2c}, the probability

that two nodes are connected, is a Bernoulli random variable; denote the probability Pr{I{r2i,j ≤ r2c} = 1}

by p. Note that an analytical expression for p can be derived if the nodes are uniformally distributed

(see [21]); for other distributions, numerical integration can be employed to determine p.

We require that L(·) is such that the ζi,N are identically distributed with finite mean and (44) holds.

It is straightforward to show that both mean and variance of random variables ζi,N are bounded under

our assumptions (42) on L(di, dj):

|E{ζi,N}| =

∣∣∣∣∣∣E


N∑
j=1,j 6=i

I{r2i,j ≤ r2c}L(di, dj)


∣∣∣∣∣∣ (98)

≤ sup

∣∣∣∣∣∣
N∑

j=1,j 6=i
I{r2i,j ≤ r2c}L(di, dj)

∣∣∣∣∣∣ = 2. (99)
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The transition involves moving the expectation outside the modulus, replacing it by a supremum, and

then application of the bounds in (42). Moreover,

σ2
N = E{(ζi,N − E{ζi,N})2} (100)

≤ E{ζ2
i,N} (101)

= E


N∑

j=1,j 6=i
I{r2i,j ≤ r2c}L(di, dj)

N∑
k=1,k 6=i

I{r2i,k ≤ r2c}L(di, dk)

 (102)

≤ sup

∣∣∣∣∣∣
N∑

j=1,j 6=i
I{r2i,j ≤ r2c}L(di, dj)

∣∣∣∣∣∣ sup

∣∣∣∣∣∣
N∑

k=1,k 6=i
I{r2i,k ≤ r2c}L(di, dk)

∣∣∣∣∣∣ = 4. (103)

Taking into account (98) and (100), we can consider the following centered square integrable random

process:

χi,N = ζi,N − E{ζi,N}, i = 1 . . . N (104)

We note that if the correlation function of this random process satisfies ergodicity assumptions implied

by (44), we can invoke the Strong Law of Large Numbers stated by Poznyak [22] (Theorem 1) to show

that
1
N

N∑
i=1

χi,N
a.s.−→ 0. (105)

In its turn, this along with the assumption E{ζi,N} = E{ζ} implies that according to (104)

1
N − 1

N∑
i=1

ζi,N
a.s.−→ E{ζ}. (106)

Combining (106) with (97) leads us to the following conclusion:

ξ∞ = lim
N→∞

{
2− 2

N − 1

N∑
i=1

ζi,N

}
(107)

a.s.−→
N→∞

2(1− E{ζ}) (108)

Finally, noting (40) concludes the proof.

APPENDIX F

RANDOM GEOMETRIC GRAPHS WITH MAXIMUM DEGREE WEIGHTS: PROOF OF PROPOSITION 5

Proof: Recall that the maximum degree weight design scheme employs the following settings:

L(di, dj) , N−1 for {i, j} ∈ E and i 6= j and Wii = 1 − di/N . With these choices, ζi,N takes the

following form:

ζi,N =
1
N

N∑
j=1,j 6=i

I{r2i,j ≤ r2c} (109)
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Taking the expectation of ζi,N gives us:

E{ζi,N} =
1
N

N∑
j=1,j 6=i

E{I{r2i,j ≤ r2c}} =
N − 1
N

p, 0 ≤ p ≤ 1 (110)

Now, consider the double averaged [22] correlation function (45) of the random process defined in (104)

RN =
1
N2

N∑
i=1

N∑
j=1

E{(ζi,N − E{ζi,N})(ζj,N − E{ζj,N})}

=
1
N2

N∑
i=1

N∑
j=1

E


 1
N

N∑
k=1,k 6=i

I{r2i,k ≤ r2c} −
N − 1
N

p

 1
N

N∑
`=1,` 6=j

I{r2j,` ≤ r2c} −
N − 1
N

p


=

1
N4

N∑
i=1

N∑
j=1

N∑
k=1,k 6=i

N∑
`=1,` 6=j

E
{
I{r2i,k ≤ r2c}I{r2j,` ≤ r2c}

}
− (N − 1)2

N2
p2

(111)

Let us examine the quadruple sum in (111). There are four possible cases to analyze:

1) i = j and k = `: The number of occurrences of this event is N(N − 1). The expectation can be

evaluated:

E
{
I{r2i,k ≤ r2c}2

}
= p2 + p(1− p) = p (112)

2) i = j and k 6= `: The number of occurrences of this event is equal to N(N − 1)(N − 2). It is not

necessary to evaluate the expectation directly. It is sufficient to note that this expectation corresponds

to the probability of three arbitrary nodes in the network being connected. This probability is less

than or equal to the probability of two arbitrary nodes being connected. For some p′ such that

0 ≤ p′ ≤ p(1− p), we have:

E
{
I{r2i,k ≤ r2c}I{r2i,` ≤ r2c}

}
= p2 + p′ (113)

3) i 6= j and k = `: This case is analogous to the preceding case.

4) i 6= j and k 6= `: The number of occurrences of this event is equal to N(N − 1)(N2 − 3N + 3).

The expectation is easy to evaluate using the independence of the random variables involved. The

expectation corresponds to the probability of two independent randomly selected pairs of nodes

being connected:

E
{
I{r2i,k ≤ r2c}I{r2j,` ≤ r2c}

}
= p2 (114)

The above analysis leads to the following bound on the double averaged correlation function:

RN < p(1− p)
2N + 1
N2

(115)
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Now we can use (115) and (100) to show that the series (44) converges. Indeed,∑
N∈N+

σN
N

√
RN−1 +

σ2
N

N2
<
∑
N∈N+

2
√

2
√
p(1− p)√

N(N − 1)
+

4
N2

. (116)

The series on the right hand side of (116) converges, which implies the convergence of the series in (44).

Since (44) is satisfied, we can apply Theorem 3 with (110) to derive (49). The result (50) follows

immediately from the definition of Λ(ξ) in (40).
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