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Abstract— Probabilistically quantized distributed averaging the weighted linear combination,
(PQDA) is a fully decentralized algorithm for performing aver-
age consensus in a network with finite-rate links. At each ite- zi(t+1) =W, zi(t) + Z Wi j;(t).
tion, nodes exchange quantized messages with their immetka j:(i,j)EE
neighbors. Then each node locally computes a weighted avga . L .
of the messages it received, quantizes this new value using aFOr @ given initial statex(0), and reasonable choices of
randomized quantization scheme, and then the whole process weights W, ;, it is easy to show thalim; .. z;(t) =

is repeated in the next iteration. In our previous work we L Z]\i z;(0) £ Z. The DA algorithm was introduced by
introduced PQDA and demonstrated that the algorithm almost 'Jl'vsitsizlails in [17], and has since been pursued in various

surely converges to a consensus.€., every node converges to
the same value). The present article builds upon this work forms by many other researcheesd, (3, 6,8,11, 14, 20])).

by characterizing the rate of convergence to a consensus. Of course, in any practical implementation of this algo-
We illustrate that the rate of PQDA is essentially the same rithm, communication rates between neighboring nodes will

as unquantized distriputed averaging when the discrepancy pe finite, and thus quantization must be appliedztot)
among node values is large. When the network has nearly pofore it can be transmitted. In applications where heavy

converged and all nodes’ values are at one of two neighboring tizati tb lice h fi ltiol
guantization points, then the rate of convergence slows daw duantzation must be applie .0, when executing multiple

We bound the rate of convergence during this final phase by CONsensus computations in parallel, so that each packettra
applying lumpability to compress the state space, and thenging  mission carries many values), quantization can actudaigcaf

stochastic comparison methods. convergence properties of the algorithm. Figure 1 shows
the trajectoriesx;(t), for all nodes superimposed on one
set of axes. In Fig. 1(a), nodes apply deterministic uniform
guantization withA = 0.1 spacing between quantization
points. Although the algorithm converges in this example,

A fundamental problem in decentralized networked sysclearly the limit is not a consensus; not all nodes arrive at
tems is that of having nodes reach a state of agreemefte same value.

For example, the nodes in a wireless sensor network must|n [1,2] we introducedprobabilistically quantized dis-
be synchronized in order to communicate using a TDMAributed averaging(PQDA). Rather than applying deter-
scheme or to use time-difference-of-arrival measurenfents ministic uniform quantization, nodes independently apply
localization and tracking. Similarly, one would like a h@$t  simple randomized quantization scheme. In this scheme, the
unmanned aerial vehicles to make coordinated decisions gghdom quantized value is equal to the original unquantized
a surveillance strategy. This paper focuses on a protaty/pic/alue in expectation. Through this use of randomization, we
example of agreement in networked systems, namely, thi@arantee that PQDA converges almost surely to a consensus.
average consensysoblem: each node initially has a scalarHowever, sincez is not divisible by A in general, the
value,y;, and the goal is to compute the average}™" | y:  value we converge to is not precisely the average of the
at every node in the network. initial values. We presented characteristics of the lingjti
Distributed averagingDA) is a simple iterative distributed consensus value, in particular, showing that it is equat to
algorithm for solving the average consensus problem witim expectation.
many attractive properties. The network state is mainthine The main contribution of the present paper is to character-
in a vectorx(t) € RY, wherez;(t) is the value at nodeafter ize the rates of convergence for PQDA. We show that, when
t iterations, and there ar® nodes in the network. Network the valuese;(¢) lie in an interval which is large relative to the
connectivity is represented by a gragh = (V, E), with quantizer precisior\, then PQDA moves at the same rate
vertex setV = {1,..., N} and edge seff C V2 such that as regular unquantized consensus. On the other hand, the
(i,4) € E implies that nodeg and j communicate directly transition from when node values are all withi of each
with each other. (We assume communication is symmetricother {.e., each node is either &A or (k+1)A, for somek),
In thet+ 1st DA iteration, node receives values;(t) from is slower than unquantized consensus. We present a scheme
all the nodeg in its neighborhood and updates its value byfor characterizing the time from when PQDA iterates enter

I. INTRODUCTION
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Fig. 1. Individual node trajectories.€., z;(t), Vi) taken by the distributed average consensus using (a:jndeistic uniform quantization and (b:)
probabilistic quantization. The number of nodesNis= 50, the nodes’ initial average & = 0.85, and the quantization resolution is set4o= 0.1. The
consensus value, in this case, is 0.8.

this “final bin” until the algorithm is absorbed at a consensuthe quantization noise diminishes and nodes converge to a
state. consensus.

The remainder of the paper is organized as follows. Kashyapet al. examine the effects of quantization in
Section Il describes the probabilistic quantization sohenmconsensus algorithms from a different point of view [7].
employed by PQDA. Section Ill formally defines the PQDAThey require that the network average= 1/N ZZNZI (1),
algorithm and lists fundamental convergence properties: S pe preserved at every iteration. To do this using quantized
tion IV explores rates of convergence when the node valuggnsmissions, nodes must carefully account for round-off
are far from a consensus, relative to the quantization precrrors. Suppose we have a network¥fnodes and let\
sion A. Section V presents our technique for characterizingenote the “quantization resolution” or distance between t
convergence rates when all nodes reach the “final bin” angliantization lattice points. If is not a multiple of NA,
are within A of each other. We conclude in Section Vl.then it is not possible for the network to reach a strict

Before proceeding, we briefly review related work. consensusi@. lim;_. max; ; [z;(t) — x;(t)] = 0) while
also preserving the network averagg, since nodes only
A. Related Work ever exchange units ak. Instead, Kashyapt. al define the

While there exists a substantial body of work on averag@otion of a “quantized consensus” to be such thatralt)
consensus protocols with infinite precision and noise—fréd@ke on one of two neighboring quantization values while
peer—to—peer communications, little research has beea dd¥eserving the network averages., z;(t) € {kA, (k+1)A}
introducing distortions in the message exchange. In [12for all i and somek, and}_, z;(T") = Nz. They show that,
Rabani, Sinclair, and Wanka examine distributed averagingder reasonable conditions, their algorithm will coneerg
as a mechanism for load balancing in distributed computiri§ @ quantized consensus. However, the quantized consensus
systems. They provide a bound on the divergence betweignclearly not a strict consensusg,, all nodes do not have
quantized consensus trajectorieg/), and the trajectories the same value. Even when the algorithm has converged, as
which would be taken by an unquantized averaging algdgnany as half the nodes in the network may have different
rithms. The bound reduces to looking at properties of thealues. If nodes are strategizing and/or performing astion
averaging matrixw. based on these values.q, flight formation), then differing

Recently, Yildiz and Scaglione, in [22], explored thevalues may lead to inconsistent behavior.
impact of quantization noise through modification of the Of note is that the related works discussed above all
consensus algorithm proposed by Xiao and Boyd [21]. Theytilize standard deterministic uniform quantization stles
note that the noise component in [21] can be considerdgd quantize the data. In contrast to [22], where quantimatio
as the quantization noise and they develop an algorithnoise terms are modeled as independent zero-mean random
for predicting neighbors’ unquantized values in order twariables, we explicitly introduce randomization in ouagu
correct errors introduced by quantization [22]. Simulatio tization procedure. Careful analysis of this randomizatio
studies for smallV indicate that if the increasing correlation allows us to provide concrete theoretical rates of convesge
among the node states is taken into account, the varianceinfaddition to empirical results. Moreover, the algorithm



proposed in this paper converges to a strict consensus, fas some quantization point* € 7.

opposed to the approximate “quantized consensus” achievedbofs of all the theorems stated in this section can be found
in [7] which is clearly not a strict consensus and does naoh [2].

preserve the average, however the network average may nofThe limiting quantization pointy*, is not equal toz

be preserved perfectly by our algorithm. In addition to provin general, sincer is not necessarily divisible byA. This

ing that our algorithm converges, we show that the networkompromise is required if we want to guarantee convergence
average is preserved in expectation, and we charactegze th a consensus in the quantized setting. The theorem above
limiting mean squared error between the consensus value amly guarantees to a convergence and does not say anything
the network average. about how closer* will be to Z. The following results
quantify the accuracy of PQDA.

Il. PROBABILISTIC QUANTIZATION Theorem 2 ([1, 2]): For the sequence(t) of iterates gen-

Suppose that the scalar valug € [-U,U] C R lies  grated by PQDA steps (3) and (4),
in a bounded interval. Furthermore, suppose that we wish

to obtain a quantized messaggewith length bits, where E{ lim x(t)} =7zl.
[ is application dependent. We therefore halie = 2! h 3 (12]): F “;" .
guantization points given by the set= {7, 7,...,71}. eorem 3 ([2]): For the sequence(t) of iterates gener-

The points are uniformly spaced such that= 7,1, — 75 ated by PQDA steps (3) and (4),

for j € {1,2,...,L —1}. It follows that A = 2U/(2! — 1). m L 1 ~ A 1
Now supposer; € [rj,7;+1) and letqg; £ Q(x;) where Jfim Jim B latt) =l < 59— p(W =J)
Q(-) denotes the PQ operation. Then is quantized in a

babilisti Thus, PQDA converges t@ in expectation. The upper
probabilistic manner:

bound on the standard deviation given in Theorem 3 contains
Pr{gi=7j41} =r and Pr{g; =7} =1—r (1) twoterms. First, the\ /2 worst-case error is due to our use
. of quantization. The second terifl,— p(W —J)) 1, relates
wherer = (z; — 7;)/A. The following lemma, adopted {4 hou fast information can diffuse over the network, which
from [19], discusses two important properties of PQ. is directly a function of the network topology. The more
Lemma 1 ([19]): Supposer; € [7;,7;+1) and letq; be jterations that are required to reach consensus, the moee ti
an I-bit quantization ofr; € [-U,U]. The message; is an  propabilistic quantization must be applied, and each tiree w
unbiased representation of, i.e., quantize we potentially introduce additional errors.
, U? A?
E{gi} = =i, and E{(q; — x; o5 = —.
{ai} = =i, and E{(q; — 2:)"} A
I1l. PROBABILISTICALLY QUANTIZED DISTRIBUTED
AVERAGING

(2) IV. CONVERGENCEANALYSIS: FAR FROM CONSENSUS

To get a handle on the rate of convergence of PQDA,
we begin by studying how spread out the individual
node values are over the intervgbU,U]. Let I(¢) =

This section describes the PQDA algorithm introduced ill}nini ¢i(t), max; ¢;(t)]. It is easy to show (see [2]) that
[1,2] We assume each node begins with initial Conditioq(t + 1) C I(t) This follows Since’ by our constraints on
z;(0) = v, as before. At iteratiort, nodes independently W, eachs;(t+1) is a convex combination of components of
quantize their values via q(t). Therefore, after iterating and quantizing, the minimum

at) = Q1)) 3) value can never decrease and thg maximum cannot increase.
The analogous result also holds if one defifi&g in terms
These quantized values are exchanged among neighbors, ahthe components of minimum length quantization range of
the usual consensus linear update is performed via x(t).
. Next, let rq(t) = max; ;¢ — ¢; denote the range of
x(t+1) = Walb). @) quantized ngtwork valuesj at tim% Clearly, sincex(t)
Let J = N-'117. Following Xiao and Boyd [20], we converges to a consensus, eventualyt). Our first results
assume thatW is a symmetric stochastic matrix which dealing with rates of convergence for PQDA examine the
satisfiesW1 =1, 17W = 17, andp(W — J) < 1, where rate at whichr,(t) tends to zero.
p(-) denotes the spectral radius. These properties suffice toTheorem 4 ([2]): Let () be as above, and let (0) =
guarantee that(t) converges to the average consensus whanax; ; z;(0) — z;(0). Then
perfect, unquantized transmissions are used [20].

Due to our use of. p_robablllst|c guantizatior(t) is a E {rq(t)} < / PHW — J) 75(0) + 2A.
random process, and it is natural to aBlaesx(t) converge, N
and if so, does it converge to a consensimsfa, 2], we show Ignoring the2A term for a moment, we see that the range

thatx(¢) indeed converges almost surely to a consensus. of values decays geometrically at a rate proportional to the

Theorem 1 ([1,2]):Let x(t) be the sequence of iteratesspectral gap ofW, p(W — J). In fact, this is the same
generated by the PQDA algorithm defied in (3) and (4). Thefate at which standard, unquantized consensus convemes, s
) . we see that whemg(t) is large, errors due to quantization

Pr(lim x(t) =771 do not significantly hamper the rate of convergence. On

t—o0



L Using the state recursion and utilizing the conditionaleind

' [—Theoretical Upper Bound pendence of;(t) samples [19], we arrive at
---Simulated Range — PQDA|
- - Simulated Range - SDA N
0 |1 . .
s * Py=]]1-(q - w"q) (6)
% k=1
510‘17 4 where g; and w* denote thek—th element of the statg
p e T i and thek—th row of the weight matrix, respectively. Recall
§ . e that the constructed Markov chain is an absorbing one.
§1° 3 3 Renumbering the states iR so that the transient states
T comes first yields the canonical form:
107 1 Q R
-8 "
107 ‘ ‘ ‘ HereI andO are identity and zero matrices with appropriate
0 50 100 150 200 . . .
Iteration Number sizes, respectively. The fundamental matrix of a Markov

chain is given by F = (I — Q)~'. The entryF;; of F
Fig. 2. This figure plots the rangeq (t), as a function of iteration number. gives the expected number of times that the process is in
The solid curve shows our theoretical upper bound, the dashbeve is the transient statg if it is started in the transient state

generated empirically by averaging over 5000 Monte carfaufations. Also L.
plotted for reference is the curve of standard unquantizd(8DA) that L€t 1; be the expected number of steps before the chain is

is generated empirically by averaging over 5000 Monte caioulations.  absorbed, given that the chain starts in statend Ietn
For the flrs_t 20 |t_era_t|ons, PQDA‘ converges at essentlall;/__shme rate be the column vector whoseth entry isv;. Thenv = F1.

as unquantized distributed averaging. However, arounde2@tions, all of o . .
the valuesg;(t) are within one or twoA, and convergence slows down Moreover, LetB;; be the probability that an absorbing chain

considerably. will be absorbed in the absorbing statef it starts in the

the other hand, this result is loose in the sense that fansient state. Let B be the matrix with entries3;;. Then,
only implies r4(t) < 2A, at best. However, we know that B = FR, whereR is as in the canonical form.

PQDA converges almost surely, so eventually(t) = 0. Unfortunately, the exact computation of the expected
The gap is due to worst-case analysis employed to obtain tRgMber of steps to absorption requires inversion of matrix
result. Empirically, we observe thag(t) does indeed tend With size2" —1x 2% —1, which is a challenging task. To
to zero, but when convergence is nearly obtairigg, fvhen ~Overcome this drawback, in the following, we investigate a
rq(t) = A or 2A, the rate of decay is significantly slower Markov chain withN/2 4+ 1 s’gates, requiring. the inversion
than that of unquantized consensus. Figure 2 depipty  ©f @ matrix of manageable siz¥/2 x N/2 with trade—off

as a function of iteration. The plot shows our bound, an8f Yielding only bounds on the expected number of steps to
a simulated curve obtained by averaging over 5000 Mong@Dsorption.

Carlo trials. In this simulation we use a network §f= 50 We employ the reduction techniques outlined in [16] to
nodes, with quantizer precisiof = 0.2. In the figure we analyze the convergence of the Markov chain. We need
see that around the time wheg(t) = 2A (roughly the O introduce a modification, since it is not computationally
first 20 iterations, also plotted the simulated range of thiasible to compute or process € —1x 2" —1 probability
unquantized standard DA (SDA)), the rate of convergendgansition matrix, as required in [16].

undergoes a smooth transition and slows down significantlx Preliminaries

Next, we look at characterizing the rate of convergence’

during this final phase, focusing on the final step, without We first introduce some notation and recall some defini-

loss of generality, fromrg(t) = 1 to 74(t) = 0. tions. The definitions are extracted from [16] and [15].
Definition 1 (Strong order).Let U and V' be two R"-
V. CONVERGENCEANALYSIS: FINAL BIN valued random variable$/ is smaller thanl in the sense

Next, we consider the convergence of the probabilisticallgf strong ordey if and only if for all nondecreasing real
guantized consensus algorithm after the time step that dlinctions f fromR™ (in the sense of componentwise ordering
the node state values are in tielength quantization bin, on R™), we haveEf(U) < Ef(V), provided that the
i.e, rq(t) = A. Without loss of generality, we assume thatexpectations exist.

x(t' +t) € [0,1]V indicating thatq(¢) € {0,1}", and that If this conditions holds, then it is denotdd <, V. < is
t'=0. a partial orderj.e., reflexive, antisymmetric and transitive.
Let us construct a Markov chai@ with 2%V states, where In the case wher& andV are{1,...,m}-valued random

the chain states are given tly= {q°,q,...,q2" }, where variables,U <., V if and only if Vi € E, Y-, u(i) <
q' € {0,1}V fori=1,2,...,N.Henceq(t) € Qfort > 1. > ,..v(i), whereu andv are the probability distributions
The entriesP;; of the transition probability matri¥ is given of U and V. This last relation is also denoted<, v.
by Definition 2 K,; comparison of stochastic matrices):
Py =Pr{q(t+1)=d’|q(t) = q'}. (5) Let A and B be twon x n stochastic matrices indexed by



elements ofE. and initial conditiona®. The Markov chain® is said to be
A<y B<sVie B, Ai,)<B(.). (®) ordinary lumpable with respect b and matrixA¢ is referred

I s to as anordinary lumpedmatrix.
Definition 3 (£;-Monotonicity): Let A be an 7 x 7 The key result from [16] (Lemma 2.1) relies on identifying
stochastic matrix. We say that is monotone in the sense

) . a <,,-monotone optimal matrix)/ and a discrete Markov
of <, if and only if chainy — (7, P), such that ()P <., 3 <. P, (i) P
Vi<n, A(i,)<qA@+1,). (9) s ordinary lumpable with respect to a partitiély and (iii)

Definition 4 (<,-monotone optimal matrix)Let A be a 7 <s 7. Under these conditions, thie-valued Markov chain
stochastic matrix\/ is the < ;-monotone optimal matrix Yo = (7%, P,) with P, defined by (10) (withA = P) is
with respect tad if it is the lowest (the greatest) with respectsuch thate(y) <s: Y,. Note that the result holds i}/ is

to the partial order () such thatd <, M (M < A). merely <,;-monotone (not optimal), but the resultant bounds
) ) on ¢(x) are not as tight.
B. Truffet's Reduction techniques In our case, we can s&t= r to satisfy the third condition.
Let x = (w, P) be a discrete-time homogeneous Marko\emma 3.1 from [16] provides a recipe for constructing an
chain with totally ordered state spaée= {1,...,7n} (with optimal ordinary lumped matri®’ given the<,;-monotone

respect to a canonical order & <). Herer is the initial matrix M. We first recall the definition of upper optimality
distribution andP is the associated Markov transition matrix.in this setting:

The random variablg(t) represents the state of the system Definition 5: Let A/ be ann x n monotone matrixO is
at epocht. This chain is used to represent the progressioan optimal uppel. x L matrix if and only ifvl, K € ¥, the
through the quantization states, so the states arg-theetors quantityZ{;:K O(I, J) is the smallest quantity such that:
andn = 2V — 1. Let k(q) = min(3, ¢, N = S0, a:). N N

This value captures the minimum Manhattan distance Qf_ Vk € E(I), Z Z M(k,j) < Z o,J)

to an absorbing state. We establish an ordering by requiring J=K jeBL) =K

that for any two states labelledand j, such that < j, the Lemma 2 ([16], Lemma 3.1)For any arbitrary partition
associatedj-vectors, denoted(” andq?) satisfyk(q¥) > E, and <,-monotone matrix)/, there exists an optimal
k(q\9)). If the equality holds, then states are ordered bygrdinary lumped matrix>;, . ,, which is defined by:

o,opt?
considering they vectors as binary numbers. 3 by
Following [16], consider the surjective mappiag £ — v ¢ = ,
I,JeX P 1,J)= M(b 11
S ={1,....L}, 0<L < nsuchthat = (c*(I))r—1...1 T E€X, Poopll, ) jZ (br,g) (1)
—ay

are lumped states that form a partition6f We assume is Truffet provides an algorithm for identifyingZ, but it
non-decrez(ajilng,ar!d indeed, in our case, we defing/)) % requires calculation and processing of every state in the
N/2 — k(") + 1, implying L = N/2 + 1. Denotee(x) = originaly x 7 Markov chain. The construction @y o (1, )

(e(x(®)))een- i ) , and henc&”) does not require specification of the individual
The reduction technique presented by Truffet strives 190 a5 ofi7(s;, -): it suffices to determine the sums over
generate stochastic matrices that bound the trans't'onmatgartitions. However, even this task, with — 2V — 1, is

of th_e Iumpe: I;]/Iarkr(:v chaln._ Thg l\g/lloali IS t(;] o_levelé)p thez ot computationally feasible in our case. We note that it is
matrices such that the associated Markov chains, denoted,, o+ cssential to identif;l?;()pt; if we can specify anl, x I,

andY’, satisfy, for all?: matrix P, (I, .J) satisfyingP; , , < P,, then we achieve a

o,opt
(Y)(0),...,Y (1) <& (e(x(0)),...,e(x(t))) (potentially looser) bound.
<t (7)0),..., T (1)) I\/lThe metr_lodology for constructing a onver bounding
arkov chainY, such thatY, <. e(x) is directly anal-
Let us denote the cardinality of~'(I) as n;, I = ogous to the method fdr,. We now present a method, for
1,...,L. We assume that fof = 1,...,L, E(I) = our specific problem scenario, for constructing?§(7, J)
e '(I) = [ar,bs], with ay11 = b+ 1,1 =1,...,L —1 that does not involve direct specification df or access to

anda; = 1 andby = 7. Denote by A(E) the set of all all states in the chairy.
probability distributions orF, and equivalently denonote by
A(X) the set of all probability distributions on. ) i - ]

We recall the result concerning ordinary lumpability, pre- We identify a partition®> defined by the valueg(x(j)) =
sented in [16], as adapted from [4]. Consider Brvalued V/2—k(a"))+1. Letus denote, for € , k(J) £ (k(q")

C. Convergence results

Discrete-time Markov Chai® = (a, A). for any j € J. The key observation is the following. For
Result 1:1f VI,.J € X, Vi € E(I), o(I,J) = A(i, E(J)) t€landleX,

does not depend of) then matrixA is said to be ordinary j=bs

lumpable with respect to partitioR and Vo € A(E) the P(i,J) £ > P(i,j) (12)

process:(®) is aX-valued discrete-time Markov Chain with j=as

L x L transition probability matrix4A$ defined by B(k(J);Wq®) + B(N — k(J);Wq®) k(J) # N/2
VI,LJ €S,  ASILJ) =o(I,J), ) | Bk(T);WqD) k(J) = N/2



where B(¢; p) denotes the Poisson-Binomial distribution, convergence time. In the following, we define the point
. ; metric bound [13].
Pj. Definition 6: Let ;1 and Q2 denote finite signed mea-
1—p, —=— (13 ) :
,1:[( 2 Z H 1—pj. (13) sures which are concentrated @n = {0, 1, ...} and satisfy
a that Q1(Z+) = Q2(Z4), then, the point metric measure
We can construct the matri?i by ensuring that for all between@®; and (). is given by

ielandl,K €%, d(Q1,Q2) = sup |Q1({m}) — Q2({m})].  (15)

B(t;p) =

j=1 1<j1<...je<n z=1

L L j=by
Z Pi(I,J) < Z Z P(i,§) Before, we present the main result of Roos, let us intro-
=K J=K i=a, duce the following notations to simplify the presentation:

We can achieve this by upper-bounding sums of the expres- N ) n(p)

sions in (12). P =72 P 1(p) = 292(0) +77(p), 0(p) = INpg (19
Let #neigh(¢) denote the cardinality of the set of neigh- j=1

bours of the nodes with valuk in stateq”. Suppose that

the matrixW satisfies the condition that for alli’ € I and

I,Key,

with vx(p) = 2L, (p — p;)*. The following theorem,
adopted from [13], gives a bound on the point metric measure
for approximating the Poisson—-Binomial distribution wih

L g=bs L Jj=bs Binomial one.
> P(i,j) < ) P(i', ) Theorem 5:Let n € {2,3,...} and0 < z1 < 29 <
J=K j=as J=K j=as z3 < n+ 1 be the zeros of3(z,n + 1,p), where K
if #neigh(i) < #neigh(i'). denotes the Krawtchouk polynomial of degrge Then,
If we can find the set of states such that#neigh(i*) <  d(B(N,p),B(N,p)) = H + R , where
#neigh(s') for all i* € I*,i € I, and this set of states is Yo
small for eachl, then we can perform a two-step reduction - N(N —1)[pqg)?
procedure. We first eliminate all rows except those belapgin x max{|Kz(|z: |, N,B)|b(|zi], N, p)|i € {1,2,3}}
to the sets/*,I € ¥. Then we can apply the procedure (17)

outlined in [16] to identify a suitabl@z. The reason for
pursuing this approach is that very effective heuristics ca@nd

be developed for searching for the sEt, whereas direct Rl < ) 2.398 1
identification of P is intractable for largeV. [R| < |3| min [Npg2’
If it is impossible to identify the states belonging 6, 1.62762(1 — 0.75/8)
then it may be possible to upper bouftdleigh(:*) and lower  min { - - ,3.69575 (1 + 2,/72 exp(472))
. . 0 2
bound the variance and third-moment of the non-zero com- VNDPg(1 - \/5)

ponent of P(i*,-). Then we can develop bounds fBi*, -) (18)
itself, which is a Poisson-Binomial, using an approximatio it e = 7(P), 0 = 0(p) andg =1 — p.
scheme based the Krawtchouk expansion outlined in Sectionygte that the point metric bound includes the Krawtchouk

V-D. The upper bound forms a suitab}_é). polynomials given by

D. The Krawtchouk Expansion j

N — -
Let Sy = X1 + X2 + --- + Xy denote the sum ofV Kj(x,N,p) = Z( j—lf ) ( z ) (—p)yFqF. (19)
independent Bernoulli random variable¥;, each having k=0
success probabilities Note that we are specifically interested Krawtchouk polyno-

v 1 Al mials of degree two and three; finding the rootsiof and

Pr{X; =1} =1-Pr{X; =0} =p; €[0:1]  (14) evaluating those roots ii;. From the theory of orthogonal
for j = 1,2,...,N. The distributionPr{Sy = n} is com- polynomials, it follows that zeros of the Krawtchouk poly-
monly referred to as the Poisson—Binomial distribution andlomials are real, simple and lie in the interyal N) [13].
is denotedB (NN, p), wherep denotes the vector of successHence, one can determine the roots/of using numerical
probabilities; the exact expression f@®(V, p) is given by techniques. Moreover, closed—form expressions exiskfor
(13). SinceB(N, p) has a complicated structure, it is oftenrendering the evaluation of obtained roots trivial.
approximated by other distributions. The most notables are
normal approximations and the Edgeworth expansion [1&- Example
18], and Poisson approximations and expansion related toln this section, we include the results of a convergence
Charlier polynomials [5,9]. In the following, we consideranalysis of thelW matrix used in simulations described in
the approximation of the distribution ¢fy by the Binomial Section IV. For this matrix, we perform a branch-and-bound
distribution B(V, p) with parametetV and arbitrary success search procedure to identify the sdts This procedure is
probability p proposed by Roos [13] due to its ability toa greedy search that initially selects of the sets with
provide point metric bounds requires to bound the consitleré:(q(/)) = 1, choosing those with the smallest neighbour



600 ¥ 5 ‘ through less “averaging” (multiplication with the weight
matrix) before arriving at the final bin. It is hence clearttha

5000 t + 1 P + ’ L the algorithm needs to run for a smaller number of iterations
T f o + 1t i e to arrive at a larger final bin size. _ _
2 400l + i RS RS T ¥ ity % £ | On the other hand, the expected number of iterations
2 A M 3 z SRR I taken to achieve consensus is dominated by the number of
g AT ! i : iterations taken to converge to an absorbing state afténall
5 3000 4 1 1 node values are in the final bin. Probabilistic quantizaifon
g % the dominant effect in the final bin. In fact, the time taken to
§ 200k 9.V i converge to an absorbing state is heavily dependent on the
Y 1 distance to that absorbing state at the first time step when
0o | 18Y ' | all values enter the final bin. This distance is affected by
¥ IR two factors. First, if more averaging operations occur iprio
Y oA to the instantx = min{t : r(t) < A}, then there is more
0, T 10 15 20 25 uniformity in the values, decreasing the distance from each

Initial k-value x; to Z. Second, if the initial data averageis close to a
Fig. 3. Bounds on the expected number of iterations to cgevere after quantization F_)Oint' then, on averag’e(ztA) will be closer
entry into the final bin. The lines with circle and diamond keas show t0 an absorbing state (note thB{1Tq(t)} = 17x(0)).
the lower and upper bounds, as derived from the branch-andebsearch, These observations explain the results of Fig. 4. Note that
comblned with the Iumped-state Markov chain apalysn“?. Thplaca_l mean, the convergence time order fﬁ(O) —0.85 andi(()) —0.90
derived from 5000 trials for each initial k-value, is depittby the line with "
square markers. Error bars depict 5 and 95 percentileserutire shown cases flip forA = 0.2 and A = 0.1. That is due to the fact
with the “+" marker. that the average distance to an absorbing when, at the first
cardinalities & is an algorithm constant defining the degredime step, all the node values enter the final bin is smaller
of branching in the search). Subsequently it attempts tavgrofor x(0) = 0.85 when A = 0.2 compared toA = 0.1,
each of these sets by adding one neighbour. Through thasd is smaller fo(0) = 0.90 when A = 0.1 compared to
process it createK” sets, but at each step it retains only theA = 0.2. Moreover, note that\ = 0.05 yields the smallest
K with smallest neighbour cardinalities. The process endfistance to an absorbing state for both initial conditions.
when the examined sets satigfjq’)) = N/2. Although, it takes more iterations to converge to final bin,
We now apply the procedure of [16] to develop stochastih both cases, PQDA algorithm with = 0.05 yields the
matrices that provide upper- and lower- bounds on themallest average distance to an absorbing state when all the
expected time to absorption for the original Markov chainnode values enter to the final bin for the first time step,
Figure 3 depicts the results, showing the upper and lowéence, the smallest average number of iterations to achieve
bounds (dashed) and the expected time to convergentiee consensus.
estimated empirically, by running 5000 simulations forkeac
value of k(q(?) from random initial states. The significant
number of outliers and the substantial variance indicage th This paper presented convergence results for PQDA. We
value of analytical bounds. The state-space is very larga evshow that when the range of node values is large, PQDA be-
with only 50 nodes and it is very difficult to reliably evaleat haves essentially like standard distributed averagintout
convergence times through empirical studies. quantization. When all nodes have values on two neighbor-
- ) ing quantization points, convergence is slowed. We provide
F. An Empirical Observation reduction techniques and approximations to bound the rate
We investigate the average convergence time of the dief convergence rate in this final stage of the algorithm.
tributed average consensus using probabilistic quardizat
for varyingA € {0.05,0.1, 0.2} against the number of nodes
in the network, Fig. 4(a) and (b). We also show the averag@l] T. Aysal, M. Coates, and M. Rabbat. Distributed averagasensus

number of iterations taken to achieve the final quantization Using probabilistic quantization. ~Iroc. IEEE Statistical Signal
4 Processing WorksheMadison, WI, Aug. 2007.

b?n- Moreover, Fig. 4(c) and (d)_plots the average nor_mdlize [2] T. Aysal, M. Coates, and M. Rabbat. Probabilistically agtized
distance to the closest absorbing state at the first time step distributed averaging. submitted {&EE Trans. Signal Procesing

when all the quantized node state values are in the fina[IS] gegoigok Ghosh, B. Prabhakar, and D. Shah. Randomizeig

quantization bin. The initial state averages &(@) = 0.85 algorithms. IEEE Trans. Info. Theory52(6):2508-2530, June 2006.
and X(0) = 0.90, and the connectivity radius ig = [4] P. Buchholz. Exact and ordinary lumpability in finite Nkaw chains.

\/41log(N)/N. Each data point is an ensemble average of _ J- Appl- Probah. 31(1):59-75, Jan. 1994. .
5] P. Deheuvels and D. Pfeifer. A semigroup approach to suois

10000 trials. Note thaf[ the convergence time increases With™ ,,,oximation.Annals of Probability 14:663-676, 1986.

the number of nodes in the network. The plots suggest thgb] A. Jadbabaie, J. Lin, and A. S. Morse. Coordination ofug® of
the number of iterations taken by the PQDA algorithm to  Moblle autonomous agents using nearest neighbor rule<):488-
copverge to final quant'zat.'on bin decreaseg_lamcreases' [7] A. Ka’shyap: T. Basar, and R.Srikant. Quantized consen&utomat-
This can be seen by noting that the algorithm has to go ica, 43:1192-1203, July 2007.

VI. CONCLUSION
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