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Abstract—This paper analyzes the rate of convergence of
a distributed averaging scheme making use of memory at
each node. In conventional distributed averaging, each node
computes an update based on its current state and the current
states of their neighbours. Previous work observed the trajec-
tories at each node converge smoothly and demonstrated via
simulation that a predictive framework can lead to faster rates
of convergence. This paper provides theoretical guarantees for
a distributed averaging algorithm with memory. We analyze a
scheme where updates are computed as a convex combination
of two terms: (i) the usual update using only current states,
and (ii) a local linear predictor term that makes use of a node’s
current and previous states. Although this scheme only requires
one additional memory register, we prove that this approach can
lead to dramatic improvements in the rate of convergence. For
example, on the N -node chain topology, our approach leads to
a factor of N improvement over the standard approach, and on
the two-dimensional grid, our approach achieves a factor of

√
N

improvement. Our analysis is direct and involves relating the
eigenvalues of a conventional (memoryless) averaging matrix
to the eigenvalues of the averaging matrix implementing the
proposed scheme via a standard linearization of the quadratic
eigenvalue problem. The success of our approach relies on each
node using the optimal parameter for combining the two update
terms. We derive a closed form expression for the optimal
parameter as a function of the second largest eigenvalue of
a memoryless averaging matrix, which can easily be computed
in a decentralized fashion using existing methods, making our
approach amenable to a practical implementation.

I. INTRODUCTION

Average consensus has developed into a canonical problem
in the distributed signal processing and control communities,
due to its applications in cyber-physical and multi-agent
systems. See [14] for a survey. Although distributed aver-
aging algorithms for solving the average consensus problem
have many attractive properties (e.g., robustness to changing
topology and lossy links, fully decentralized, no unnecessary
overhead for forming routes), conventional approaches are
known to suffer from slow convergence on important net-
work topologies such as two-dimensional grids and random
geometric graphs [4], even if the algorithm parameters are
optimized for the underlying topology.

In the conventional, memoryless distributed averaging al-
gorithm analyzed by Xiao and Boyd in [20] (and which can
be traced back to the seminal work of Tsitsiklis [19]), nodes
exchange information with all of their neighbors at each
iteration, and then update their local state with a weighted
linear combination of the information just received. This
update can be expressed as a simple recursion of the form

x(t+1) = Wx(t), where xi(0) is the initial value at node i,
xi(t) is the estimate after t iterations, and the matrix W
is the topology-respecting weight matrix summarizing the
updates at each node; that is, Wi,j 6= 0 only if nodes i
and j communicate directly. Xiao and Boyd [20] provide
conditions on W which guarantee asymptotic convergence,
and they show that the rate of convergence is governed by
the spectral radius, ρ(W − 1

N 11T ). As mentioned above,
this approach is slow to converge on grid-like topologies
and random geometric graphs [4] – topologies which are
commonly used to model connectivity in wireless networks.
However, visual examination reveals that the local trajectories
taken by each node converge smoothly to the consensus
state (see, e.g., Fig. 4(d) in [14]). Thus, one would hope
that faster convergence could by achieved by predicting the
final state given this initial trajectory. Numerical simulations
have previously demonstrated that such predictive consensus
algorithms indeed converge much faster than memoryless,
non-predictive schemes [2], [5], [9], [12], [16]. However, to
date, there has been no theoretical characterization of the
improvement.

A. Contributions

This paper presents the first theoretical performance guar-
antees for predictive consensus algorithms. We focus on lin-
ear updates of the form x(t+1) = αxP (t+1)+(1−α)xW (t+
1) that mix the outcomes of a conventional neighborhood
averaging, xW (t+1) = Wx(t), with a local linear predictor
xP (t + 1) that uses only one additional memory register at
each node. (The precise form of xP (t+1) is described in the
next section.) Thus, the updated state xi(t + 1) at node i is
a function of the previous states xj(t) at nodes j which are
neighbors of i, and i’s two previous states, xi(t) and xi(t−1).
We derive a closed form expression for the mixing parameter
α? that optimizes the rate of convergence, and we show that
the proposed scheme leads to dramatic improvement in rate
of convergence. In particular, we show that if the underlying
averaging matrix has a spectral radius bounded according to
ρ(W− 1

N 11T ) = 1−Ψ(N), for a network of N nodes, then
the spectral radius of our predictive scheme is bounded above
by 1 −

√
Ψ(N). Consequently, for a two-dimensional grid,

the number of iterations required to reach ε relative accuracy
is decreased by a factor of

√
N using our approach, and

for a chain topology, the number of iterations is decreased
by a factor of N . The optimal mixing parameter α? is a



function of the underlying topology and choice of weights,
W, through the second largest eigenvalue of W. There are
existing schemes for decentralized spectral analysis (e.g., [4],
[11], [15]), and so it is practical to operate the proposed
scheme in a fully decentralized fashion.

B. Related Work

A number of approaches have been proposed in the lit-
erature for accelerating distributed averaging algorithms. In
the context of gossip algorithms (an asynchronous form of
distributed averaging), researchers have proposed exchanging
information over longer distances [7] and averaging along
paths [3]. Although both of these schemes lead to faster
convergence rates, they also require that information be
exchanged over longer distances (multiple hops). Schemes
based on lifting Markov chains have also been proposed [10],
[13], but construction of these schemes also requires that
nodes know their locations or even more global topological
information.

Two main approaches to accelerating the convergence
of synchronous distributed averaging algorithms have been
identified: optimizing the weight matrix W [4], [20], and
incorporating memory into the distributed averaging algo-
rithm [2], [5], [9], [12], [16], [17]. The spectral radius of the
weight matrix governs the worst-case convergence rate in
memoryless distributed averaging algorithms, so optimizing
the weight matrix corresponds to minimizing the spectral
radius subject to connectivity constraints. Although elegant,
optimizing weights on random geometric graph topologies
provides no additional gains, order-wise, over simpler, fully-
decentralized weight constructions [4].

A more promising research direction is based on using
local node memory. The idea of using higher-order eigen-
value shaping filters was discussed in [16], but the problem
of identifying optimal filter parameters was not solved. In [5]
Cao et al. proposed a memory-based acceleration framework
for gossip algorithms where updates are a weighted sum
of previous state values and gossip exchanges, but they
provide no solutions or directions for weight vector design
or optimization. Johansson and Johansson [9] advocate a
similar scheme for distributed consensus averaging. They
investigate convergence conditions and use standard solvers
to find a numerical solution for the optimal weight vector.
Recently, polynomial filtering was introduced for consensus
acceleration, with the optimal weight vector again determined
numerically [12]. Analytical solutions for the topology-
dependent optimal weights have not been considered in
previous work [2], [5], [9], [12] and, consequently, there
has been no theoretical convergence rate analysis. Aysal et
al. proposed the mixing of neighbourhood averaging with
a local linear predictor in [2]. The algorithm we analyze
belongs to the general framework presented therein. Although
the algorithmic framework in [2] allows for multi-tap linear
predictors, the analysis focuses entirely on one-tap prediction,
which is equivalent to optimizing the original weight matrix
without making use of the history at each node. As such,
the convergence rate improvement cannot be better than that

achieved by optimizing the weight matrix as in [4], [20],
[21].

Sundaram and Hadjicostis [17] also investigate how mem-
ory can be used in distributed averaging and derive an
algorithm that exactly achieves consensus in a finite number
of iterations. Each node records the entire history of values
{xi(t)}Tt=0 and, after enough iterations, inverts this history
to recover the network average. In order to carry out the
inversion, each node needs to know a topology-dependent
set of weights. This leads to complicated initialization pro-
cedures; the additional memory required at each node grows
with the network size. In contrast, the approach analyzed in
this paper only requires a constant increase in memory size
at each node, independent of the size of the network, albeit,
at the price of only achieving asymptotic convergence.

C. Paper Organization

The remainder of this paper is structured as follows. Sec-
tion II introduces the distributed average consensus frame-
work and outlines the linear prediction-based acceleration
methodology. Section III provides the main results, including
the optimal value of the mixing parameter for the two-tap
predictor and an analysis of the convergence rate improve-
ment. We provide proofs of the main results in Section IV
and Section V concludes the paper.

II. PROBLEM FORMULATION

We assume that a network of N nodes is given, and that the
communication topology is specified in terms of a collection
of neighborhoods of each node:Ni ⊆ {1, . . . , N} is the set of
nodes with whom node i communicates directly. For j ∈ Ni,
we will also say that there is an edge between i and j, and
assume that connectivity is symmetric; i.e., j ∈ Ni implies
that i ∈ Nj . We assume that the network is connected,
meaning that there is a path (a sequence of adjacent edges)
connecting every pair of nodes.

Initially, each node i = 1, . . . , N has a scalar value xi(0) ∈
R, and the goal is to develop a distributed algorithm such that
every node computes x̄ = 1

N

∑N
i=1 xi(0). Previous studies

(see, e.g., [19] or [20]) have considered linear updates of the
form x(t+ 1) = Wx(t), where

∑
jWij = 1, and Wi,j 6= 0

only if j ∈ Ni. For this basic setup, Xiao and Boyd [20]
have shown that necessary and sufficient conditions on W
which ensure convergence to the average consensus, x̄1, are

W1 = 1, 1TW = 1T , ρ(W − J) < 1, (1)

where J is the averaging matrix, J = 1
N 11T , and ρ(A)

denotes the spectral radius1 of a matrix A. Algorithms have
been identified for locally generating weight matrices that
satisfy the required convergence conditions if the underlying
graph is connected, e.g., Maximum–degree and Metropolis–
Hastings weights [20].

Empirical evidence suggests that the convergence of the
algorithm can be significantly improved by using local mem-
ory [2], [9], [12]. The idea is to exploit smooth convergence

1ρ(A) , maxi=1,...,N |λi|, where {λi}N
i=1 denote the eigenvalues of

A.



of the algorithm, using current and past values to predict
the future trajectory. In this fashion, the algorithm achieves
faster convergence by bypassing intermediate states. Each
update becomes a weighted mixture of a prediction and a
neighborhood averaging, but the mixture weights must be
chosen carefully to ensure convergence.

The simplest case of local memory is two taps (a single tap
is equivalent to storing only the current value, as in standard
distributed averaging), and this is the case we consider in this
paper. For two taps of memory, prediction at node i is based
on the previous state value xi(t−1), the current value xi(t),
and the value achieved by one application of the original av-
eraging matrix, i.e. xW

i (t+1) = Wiixi(t)+
∑
j∈Ni

Wijxj(t).
The state-update equations at a node become a combination
of the predictor and the value derived by application of
the consensus weight matrix (this is easily extended for
predictors with longer memories; see [2], [9]). In the two-tap
memory case, we have:

xi(t+ 1) = αxP
i (t+ 1) + (1− α)xW

i (t+ 1) (2a)

xW
i (t+ 1) = Wiixi(t) +

∑
j∈Ni

Wijxj(t) (2b)

xP
i (t+ 1) = θ3x

W
i (t+ 1) + θ2xi(t) + θ1xi(t− 1). (2c)

Here θ = [θ1, θ2, θ3] is the vector of predictor coefficients.
The network–wide equations can then be expressed in

matrix form by defining

W3[α] , (1− α+ αθ3)W + αθ2I, (3)

X(t) , [x(t)T ,x(t− 1)T ]T , (4)

where I is the identity matrix of the appropriate size, and

Φ3[α] ,

[
W3[α] αθ1I

I 0

]
. (5)

Each block of the above matrix has dimensions N ×N . We
also define x(−1) = x(0) so that X(0) = [x(0)Tx(0)T ].
The update equation is then simply X(t+ 1) = Φ3[α]X(t).

Aysal et al. describe a method for choosing the predictor
coefficients θ in [2] based on least-squares predictor design.
For the two-tap memory case, the predictor coefficients are
identified as θ3 = A†TB, where

A ,

[
−2 −1 0
1 1 1

]T
, (6)

B , [1, 1]T , and A† is the Moore-Penrose pseudoinverse of
A. This choice of predictor coefficients satisfies the technical
conditions on θ required in our main results, Theorems 1 and
2, below (θ1 + θ2 + θ3 = 1 and θ3 ≥ 1, θ2 ≥ 0).

III. MAIN RESULTS

A. Optimal Mixing Parameter

The mixing parameter α determines the influence of the
standard one-step consensus iteration relative to the predictor
in (2a). We take as given a foundational weight matrix,
W, which respects the underlying topology and satisfies the
convergence criteria (1) and proceed to determine the optimal
mixing parameter α with respect to W. Before deriving an

expression for the optimal α, it is necessary to specify what
“optimal” means. Our goal is to minimize convergence time,
but it is important to identify how we measure convergence
time.

Xiao and Boyd [20] show that selecting weights W to
minimize the spectral radius ρ(W−J) (while respecting the
network topology constraints) leads to the optimal conver-
gence rate for standard distributed averaging. In particular,
the spectral radius ρ(W − J) is the worst-case asymptotic
convergence rate. Maximizing asymptotic convergence rate
is equivalent to minimizing asymptotic convergence time,

τasym ,
1

log(ρ(W − J)−1)
, (7)

where, asymptotically, τasym corresponds to the number of
iterations required to reduce the error ‖x(t)− x̄‖ by a factor
of e−1 [20]. An alternative metric is the averaging time, the
time required to achieve the prescribed level of accuracy ε
while performing the distributed averaging operation:

Tave(W, ε) , sup
X(0)6=0

inf
t≥0

{
t : ||X(t)− X̄(0)||2

≤ ε||X(0)− X̄(0)||2
}
, (8)

When W is symmetric, ρ(W − J) also defines an upper
bound on the averaging time.

The update matrix we propose, (5), is not symmetric and
it may not even be contracting. The results of [20] do not
apply for such matrices, and the spectral radius ρ(W − J)
cannot, in general, be used to specify an upper bound on
averaging time. We can, however, establish a result for the
limiting ε-averaging time, which is the averaging time for
asymptotically small ε. Specifically, in Section IV-A we show
that for matrices of the form (5),

lim
ε→0

Tave(Φ3[α], ε)
log ε−1

<
1

log ρ(Φ3[α]− J)−1
. (9)

According to this result, the averaging time required to
approach the average within ε-accuracy grows at the rate
at most 1/ log ρ(Φ3[α] − J)−1 as ε → 0. Minimizing the
spectral radius is thus a natural optimality criterion. The
following theorem establishes the optimal setting of α for a
given weight matrix W, as a function of λ2(W), the second
largest eigenvalue of W.

Theorem 1 (Optimal mixing parameter). Suppose θ3 + θ2 +
θ1 = 1 and θ3 ≥ 1, θ2 ≥ 0. Suppose further that |λN (W)| ≤
|λ2(W)|, where the eigenvalues λ1(W), . . . , λN (W) are
labelled in decreasing order. Then the solution of the op-
timization problem

α? = arg min
α
ρ(Φ3[α]− J) (10)

is given by the following:

α? =
−((θ3 − 1)λ2(W)2 + θ2λ2(W) + 2θ1)

(θ2 + (θ3 − 1)λ2(W))2

− 2
√
θ21 + θ1λ2(W) (θ2 + (θ3 − 1)λ2(W))

(θ2 + (θ3 − 1)λ2(W))2
(11)



Proofs of all results are deferred to Section IV below. A
brief discussion of the conditions of this theorem is war-
ranted. The conditions on the predictor weights are technical
conditions that ensure convergence is achieved. Three factors
motivate our belief that these are not overly-restricting: (i)
these conditions are satisfied if we employ the least-squares
predictor weights design strategy of [2]; (ii) the conditions
are relatively natural for a linear predictor that is based on
an estimate of slope; (iii) in Section III-B we show that the
choice of weights does not have a significant effect on the
convergence properties.

The condition on the weight matrix, |λN (W)| ≤ |λ2(W)|,
significantly reduces the complexity of the proof. Most
distributed algorithms for constructing weight matrices (e.g.,
Metropolis-Hastings (MH) or max-degree) lead to W that
satisfy the condition, but they are not guaranteed to do so.
We can ensure that the condition is satisfied by applying a
completely local adjustment to any weight matrix. The map-
ping W 7→ 1/2(I+W) transforms any stochastic matrix W
into a stochastic matrix with all positive eigenvalues [4]; this
mapping can be carried out locally, without any knowledge of
the global properties of W, and without affecting the order-
wise asymptotic convergence rate as N →∞.

B. Convergence Rate Analysis

We begin with our main result for the convergence rate
of two-tap predictor-based accelerated consensus. Theorem 2
indicates how the spectral radius of the accelerated operator
Φ3[α] is related to the spectral radius of the foundational
weight matrix W (in terms of upper bounds on these
quantities). Since the (limiting) asymptotic convergence time
is governed by the spectral radius, this relationship char-
acterizes the improvement in convergence rate that can be
obtained.

Theorem 2 (Convergence rate). Suppose the assumptions of
Theorem 1 hold. Suppose further that the original matrix W
satisfies ρ(W− J) ≤ 1−Ψ(N) for some function Ψ : N→
(0, 1) of the network size N decreasing to 0. Then the matrix
Φ3[α?] satisfies ρ(Φ3[α?]− J) ≤ 1−

√
Ψ(N).

In order to explore how fast the spectral radius, ρ(Φ3[α?]−
J) =

√
−α?θ1, (see Section IV-C for details) goes to one as

N →∞, we can take its asymptotic Taylor series expansion:

ρ(Φ3[α∗]− J) = 1−

√
2(θ3 − 1) + θ2
θ3 − 1 + θ2

√
Ψ(N) +O(Ψ(N)).

(12)

From this expression, we see that the bound presented in
Theorem 2 correctly captures the convergence rate of the
accelerated consensus algorithm. Alternatively, leaving only
two terms in the expansion above, ρ(Φ3[α∗] − J) = 1 −
Ω(
√

Ψ(N)), we see that the bound presented is rate optimal
in Landau notation.

We can also use (12) to provide guidelines for choosing
asymptotically optimal prediction parameters θ3 and θ2.
In particular, it is clear that the coefficient γ(θ2, θ3) =√

[2(θ3 − 1) + θ2]/[θ3 − 1 + θ2] should be maximized to

minimize the spectral radius ρ(Φ3[α?] − J). It is straight-
forward to verify that setting θ2 = 0 and θ3 = 1 + ε for
any ε > 0 satisfies the assumptions of Theorem 1 and also
satisfies γ(0, 1 + ε) > γ(θ2, 1 + ε) for any positive θ2. Since
γ(0, 1+ε) =

√
2 is independent of ε (or θ3) we conclude that

setting (θ1, θ2, θ3) = (−ε, 0, 1 + ε) satisfies the assumptions
of Theorem 1 and asymptotically yields the optimal limiting
ε-averaging time for the proposed approach, as N →∞.

For a chain graph (path of N vertices) the eigenval-
ues of the normalized graph Laplacian L are given by
λi(L) = 1 − cos(πi/(N − 1)), i = 0, 1, . . . , N − 1 [6]. It
is straightforward to verify that for the Metropolis-Hastings
(MH) weight matrix a similar expression holds: λi(WMH) =
1/3 + 2/3 cos(π(i − 1)/N), i = 1, 2, . . . , N . Thus, in this
case, ρ(WMH − J) = 1/3 + 2/3 cos(π/N). For sufficiently
large N , this results in ρ(WMH−J) = 1− π2

3
1
N2 +O(1/N4),

and thus we find that ρ(Φ3[α?]−J) = 1−O(1/N). In terms
of the number of the limiting ε-averaging time described
above, this corresponds to a factor of N decrease in the
number of iterations required to achieve a relative error less
than ε. Similarly, for a network with two-dimensional grid
topology, taking W to be the transition matrix for a natural
random walk on the grid (a minor perturbation of the MH
weights) it is known [1] that (1−λ2(W))−1 = Θ(N). Thus,
for a two-dimensional grid, the proposed algorithm leads to
ρ(Φ3[α?] − J) = 1 − O(N−1/2), or an improvement by a
factor of N1/2 iterations.

IV. PROOFS OF MAIN RESULTS AND DISCUSSION

A. Limiting ε-averaging Time

To begin, we need to motivate choosing α to minimize the
spectral radius ρ(Φ3[α]−J) since, unlike in the memoryless
setting, it does not bound the step-wise rate of convergence.
In fact, since Φ3[α] is not symmetric, Φ3[α]t does not even
converge to J as t → ∞, as in the memoryless setting.
However, we will show that: (i) for the proposed construction,
Φ3[α]t does converge to a matrix limit Φ̄; (ii) that the
limiting averaging time is governed by ρ(Φ3[α] − Φ̄); and
(iii) that ρ(Φ3[α]− Φ̄) = ρ(Φ3[α]− J).

Before stating our first result we must introduce some nota-
tion. For now, assume we are given a matrix Φ ∈ Rn×n with
Φ̄ = limt→∞Φt. We will address conditions for existence of
the limit below. For a given initialization vector X(0) ∈ Rn,
let X̃(0) = Φ̄X(0), and define the set of non-trivial initial-
ization vectors X0,Φ , {X(0) ∈ Rn : X(0) 6= X̃(0)}. Since
we have not yet established that X̃(0) = X̄(0) , JX(0), we
keep the discussion general and use the following definition
of the averaging time:

Tave(Φ, ε) , sup
X(0)∈X0,Φ

inf
t≥0

{
t : ||X(t)− X̃(0)||2

≤ ε||X(0)− X̃(0)||2
}
. (13)

In order to obtain the desired result linking Tave(Φ, ε) and
the spectral radius ρ(Φ3[α]− J) of the proposed algorithm,
we will make use of the following more general result about
limiting rates for convergent matrices.



Theorem 3. Let Φ ∈ Rn×n be given, with limit
limt→∞Φt = Φ̄, and assume that ρ(Φ− Φ̄) > 0. Then

lim
ε→0

Tave(Φ, ε)
log ε−1

<
1

log ρ(Φ− Φ̄)−1
. (14)

We omit the full proof here due to lack of space. The
basic idea is to relate the definition of Tave(Φ, ε) above in
terms of the quantity ‖(Φ − Φ̄)t‖1/tX(0), where ||Φ||X(0) =
||Φ(X(0) − X̃(0))||2/||X(0) − X̃(0)||2, and then to apply
Gelfand’s formula [8] to obtain the final result, linking
Tave(Φ, ε) and ρ(Φ−Φ̄). Accomplishing these steps requires
a number of technicalities; see [15] for the full details.

In order to apply the above result to the proposed algo-
rithm, we must establish that Φ3[α] satisfies the conditions
of Theorem 3. In doing so, we will also show that (i) for
Φ = Φ3[α], the limit Φ̄X(0) = JX(0), so our approach
indeed converges to the average consensus, and (ii) that the
limiting averaging time is characterized by a function of
ρ(Φ3[α] − J), which motivates choosing α to optimize this
expression. (Recall, in this setting J is the 2N × 2N matrix
with all entries equal to 1/2N .) Note that in the following
proposition, the conditions on θ are the same as in Theorem 1
(and were discussed in Section III), and the condition on α
is necessary for Φ3[α]t to have a limit as t→∞, as will be
established in Section IV-B.

Proposition 1. Let Φ3[α] be defined as in (5) and assume
that θ1 + θ2 + θ3 = 1, θ3 ≥ 1, θ2 ≥ 0, and α ∈ [0,−θ−1

1 ).
Then:

(a) Φ̄3[α] = limt→∞Φ3[α]t exists, with Φ̄3[α]X(0) =
JX(0) for all X(0) defined in (4),

(b) ρ(Φ3[α]− Φ̄3[α]) > 0, and
(c) lim

ε→0

Tave(Φ3[α],ε)
log ε−1 < 1

log ρ(Φ3[α]−J)−1 .

Proof: Proof of part (a). In Theorem 1 in [9], Johansson
and Johansson show that the necessary and sufficient condi-
tions for the consensus algorithm of the form Φ3[α] to con-
verge to the average are (JJ1) Φ3[α]1 = 1; (JJ2) gTΦ3[α] =
gT for vector gT = [β11Tβ21T ] with weights satisfying
β1 + β2 = 1; and (JJ3) ρ(Φ3[α] − 1

N 1gT ) < 1. If these
conditions hold then we also have Φ̄3[α] = 1

N 1gT [9] im-
plying X̃(0) = X̄(0). Condition (JJ1) is easily verified after
straightforward algebraic manipulations using the definition
of Φ3[α] in (5), the assumption that θ1 + θ2 + θ3 = 1,
and recalling that W satisfies W1 = 1 by design. To
address condition (JJ2), we set β1 = 1/(1 + αθ1) and
β2 = αθ1/(1 + αθ1). Clearly, β1 + β2 = 1, and it is also
easy to verify condition (JJ2) by plugging these values into
the definition of g, and using the same properties of Φ3[α],
the θi’s, and W as above.

In order to verify that condition (JJ3) holds, we will show
here that ρ(Φ3[α]− 1

N 1gT ) = ρ(Φ3[α]−J). In Section IV-B
we show that ρ(Φ3[α] − J) < 1 if α ∈ [0,−θ−1

1 ), and
thus condition (JJ3) is also satisfied under the assumptions
of the proposition. To show that ρ(Φ3[α] − 1

N 1gT ) =
ρ(Φ3[α] − J), we prove a stronger result, namely that
Φ3[α]− 1

N 1gT and Φ3[α]− J have the same eigenspectra.

Consider the eigenvector vi of Φ3[α] with corresponding
eigenvalue λi(Φ3[α]). This pair solves the eigenvalue prob-
lem, Φ3[α]vi = λi(Φ3[α])vi. Equivalently, expanding the
definition of Φ3[α], we have[

W3[α] αθ1I
I 0

]
vi = λi(Φ3[α])

[
I 0
0 I

]
vi. (15)

We observe that (15) fits a modification of the first companion
form of the linearization of a Quadratic Eigenvalue Problem
(QEP) (see Section 3.4 in [18]). The QEP has general form
(λ2M+λC+K)u = 0, where u is the eigenvector associated
with this QEP. The linearization of interest to us has the form:[

−C −K
I 0

] [
λu
u

]
− λ

[
M 0
0 I

] [
λu
u

]
= 0.

(16)

The correspondence is clear if we make the associations:
M = I, C = −W3[α] and K = −αθ1I, λ = λi(Φ3[α]) and
vi = [λi(Φ3[α])uTuT ]T . Eigenvectors vi that solve (15)
thus have special structure and are related to ui, the solution
to the QEP,

(λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0. (17)

Because the first and third terms above are scaled identity
matrices and the definition of W3[α] (see (3)) also involves
scaled identity matrices, we can simplify this last equation
to find that any solution ui must also be an eigenvector of
W.

We have seen above, when verifying condition (JJ1), that
1 is an eigenvector of Φ3[α] with corresponding eigenvalue
λi(Φ3[α]) = 1. Likewise, we know that2 W1 = 1, and so
this agrees with the structure of vi identified above. Observe
that, from the definition of g and because β1 + β2 = 1,
we have ( 1

N 1gT )1 = 1. Thus, (Φ3[α] − 1
N 1gT )1 = 0.

Similarly, recalling that J = 1
2N 11T , we have J1 = 1, and

thus (Φ3[α]−J)1 = 0. By design, W is a doubly stochastic
matrix, and all eigenvectors u of W with u 6= 1 are orthog-
onal to 1. It follows that ( 1

N 1gT )vi = 0 for corresponding
eigenvectors vi = [λi(Φ3[α])uTuT ]T of Φ3[α], and thus
(Φ3[α] − 1

N 1gT )vi = Φ3[α]vi = λi(Φ3[α])vi. Similarly,
Jvi = 0 if vi 6= 1, and (Φ3[α] − J)vi = λi(Φ3[α])vi.
Therefore, we conclude that the matrices (Φ3[α]−Φ̄3[α]) and
(Φ3[α]−J) have identical eigenspectra, and thus ρ(Φ3[α]−
1
N 1gT ) = ρ(Φ3[α]− J).

In Section IV-B we show that ρ(Φ3[α] − J) < 1 if
α ∈ [0,−θ−1

1 ), and thus the assumptions of the proposi-
tion, taken together with the analysis just conducted, verify
that condition (JJ3) is also satisfied. Therefore, the limit
limt→∞Φ3[α]t = Φ̄3[α] = 1

N 1gT exists, and Φ̄3[α]X(0) =
JX(0) for all X(0) defined in (4).

Proofs of parts (b) and (c). In the proof of Lemma 1 (see
Section IV-B), it is shown that ρ(Φ3[α]−J]) ≥ −αθ1. Thus,
if α > 0 and θ1 < 0, then part (b) holds. The assumptions
θ1 + θ2 + θ3 = 1, θ3 ≥ 1, and θ2 ≥ 0 imply that θ1 ≤ 0,
and by assumption, α ≥ 0. If α = 0 or θ1 = 0, then the

2We abuse notation here, using 1 to denote the vector of all 1’s, where the
dimension is not explicitly indicated but should be clear from the context.



proposed predictive consensus scheme reduces to memory-
less consensus with weight matrix W (and the statement
follows directly from the results of [4], [20]). Thus, part
(b) of the proposition follows from the assumptions and the
analysis in Lemma 1 below. By proving parts (a) and (b), we
have verified the assumptions of Theorem 3 above. Applying
the result of this Theorem, together with the equivalence of
ρ(Φ3[α]− 1

N 1gT ) and ρ(Φ3[α]−J), gives the claim in part
(c), thereby completing the proof.

B. Proof of Theorem 1: Optimal Mixing Parameter

In order to minimize the spectral radius of Φ3[α] we need
to know its eigenvalues. These can be calculated by solving
the eigenvalue problem (15). We can multiply (17) by uTi on
the left to obtain a quadratic equation that links the individual
eigenvalues λi(Φ3[α]) and λi(W3[α]):

uTi (λi(Φ3[α])2I− λi(Φ3[α])W3[α]− αθ1I)ui = 0

λi(Φ3[α])2 − λi(W3[α])λi(Φ3[α])− αθ1 = 0. (18)

Recall Φ3[α] is a 2N × 2N matrix, and so Φ3[α] has, in
general, 2N eigenvalues – twice as many as W3[α]. These
eigenvalues are the solutions of the quadratic (18), and are
given by

λ∗i (Φ3[α]) =
1
2

(
λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

)
(19)

λ∗∗i (Φ3[α]) =
1
2

(
λi(W3[α])−

√
λi(W3[α])2 + 4αθ1

)
.

With these expressions for the eigenvalues of Φ3[α], we
are in a position to formulate the problem of minimiz-
ing the spectral radius of the matrix (Φ3[α] − J), α? =
arg min

α
ρ(Φ3[α] − J). It can be shown that this problem is

equivalent to

α? = arg min
α≥0

ρ(Φ3[α]− J) (20)

The simplest way to demonstrate this is to show that
ρ(Φ3[α]− J) ≥ ρ(Φ3[0]− J) for any α < 0. Indeed, by the
definition of the spectral radius we have that ρ(Φ3[α]−J) ≥
λ∗2(Φ3[α]) and ρ(Φ3[0] − J) = λ2(W) since Φ3[0] = W.
Hence it is enough to demonstrate λ∗2(Φ3[α]) ≥ λ2(W).
Consider the inequality λ∗2(Φ3[α]) − λ2(W) ≥ 0. Re-
placying λ∗i (Φ3[α]) with its definition, (19), rearranging
terms and squaring both sides gives αθ1 ≥ λ2(W)2 −
λ2(W)λ2(W3[α]). From the definition of W3[α] in (3), it
follows that λ2(W3[α]) = (1−α+αθ3)λ2(W)+αθ1. Using
this relation leads to the expression α(θ1+(θ3−α)λ2(W)2+
θ1λ2(W)) ≥ 0. Under our assumptions, we have θ3−1 ≥ 1,
θ2 ≥ 0 and θ1 ≤ 0. Thus θ1 + (θ3 − 1)λ2

2 + θ2λ2 ≤
θ1 + θ3 − 1 + θ2 = 0. This implies that if α < 0, the last
inequality holds leading to λ∗2(Φ3[α]) ≥ λ2(W). Thus for
any α < 0 the spectral radius ρ(Φ3[α]−J) cannot decrease,
and so we may focus on optimizing over α ≥ 0.

Now, the proof of Theorem 1 boils down to examining
how varying α affects the eigenvalues of Φ3[α] on a case-by-
case basis. We show that the second eigenvalues, λ∗2(Φ3[α])
and λ∗∗2 (Φ3[α]), dominate all other pairs, λ∗j (Φ3[α]) and

λ∗∗j (Φ3[α]), for j = 1 and j > 2, allowing us to focus on the
second eigenvalues, from which the proof follows. Along the
way, we establish conditions on α which guarantee stability
of the proposed predictive consensus methodology.

To begin, we reformulate the optimization problem in
terms of the eigenvalues of Φ3[α]. We first consider
λ∗1(Φ3[α]) and λ∗∗1 (Φ3[α]). Substituting λ1(W3[α]) =
(1 − α + αθ3) + αθ2 we obtain the relationship√
λ2

1(W3[α]) + 4αθ1 = |1 + αθ1| and using the condition
θ1 ≤ 0, we conclude that

λ∗1(Φ3[α]), λ∗∗1 (Φ3[α])

=
{

1,−αθ1 if 1 + αθ1 ≥ 0⇒ α ≤ −θ−1
1

−αθ1, 1 if 1 + αθ1 < 0⇒ α > −θ−1
1 .

(21)

We note that α > −θ−1
1 implies |λ∗∗1 (Φ3[α])| > 1, leading to

divergence of the linear recursion involving Φ3[α], and thus
conclude that the potential solution is restricted to the range
α ≤ −θ−1

1 . Focusing on this setting, we write λ∗1(Φ3[α]) =
1 and λ∗∗1 (Φ3[α]) = −αθ1. We can now reformulate the
problem (20) in terms of the eigenvalues of Φ3[α]:

α? = arg min
α≥0

max
i=1,2,...N

Ji[α, λi(W)] (22)

where

Ji[α, λi(W)] =

{
|λ∗∗1 (Φ3[α])|, i = 1
max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) i > 1.

(23)
We now state a lemma that characterizes the functions
Ji[α, λi(W)].

Lemma 1. Under the assumptions of Theorem 1,

Ji[α, λi(W)]

=

{
α1/2(−θ1)1/2 if α ∈ [α∗i , θ

−1
1 ]

1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
if α ∈ [0, α∗i )

(24)

where

α∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

(θ2 + (θ3 − 1)λi(W))2

− 2
√
θ21 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))

(θ2 + (θ3 − 1)λi(W))2
(25)

Proof: For i = 2, 3, . . . N , the eigenvalues λ∗i (Φ3[α])
and λ∗∗i (Φ3[α]) can admit two distinct forms; when the
expression under the square root in (19) is less then zero, the
respective eigenvalues are complex, and when this expression
is positive, the eigenvalues are real. In the region where the
eigenvalues are complex,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|)

=
1
2

[
λi(W3[α])2 + ı2

(√
λi(W3[α])2 + 4αθ1

)2
]1/2

= α1/2(−θ1)1/2. (26)

We note that (26) is a strictly increasing function of α.
Recalling that λi(W3[α]) = (1 + α(θ3 − 1))λi(W) + αθ2



and solving the quadratic λi(W3[α])2 + 4αθ1 = 0, we can
identify region, [α∗i , α

∗∗
i ], where the eigenvalues are complex.

The upper boundary of this region is

α∗∗i =
−((θ3 − 1)λi(W)2 + θ2λi(W) + 2θ1)

(θ2 + (θ3 − 1)λi(W))2

+
2
√
θ21 + θ1λi(W) (θ2 + (θ3 − 1)λi(W))

(θ2 + (θ3 − 1)λi(W))2
(27)

Relatively straightforward algebraic manipulation of (25) and
(27) leads to the following conclusion: if λi(W) ∈ [−1, 1],
θ2 ≥ 0 and θ3 ≥ 1, then 0 ≤ α∗i ≤ −θ

−1
1 ≤ α∗∗i . This

implies that (26) holds in the region [α∗i ,−θ
−1
1 ].

On the interval α ∈ [0, α∗i ), the expression under the
square root in (19) is positive, and the corresponding eigen-
values are real. Thus,

max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2


∣∣∣λi(W3[α]) +

√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) ≥ 0∣∣∣−λi(W3[α]) +
√
λi(W3[α])2 + 4αθ1

∣∣∣ if λi(W3[α]) < 0,
(28)

or equivalently, max(|λ∗i (Φ3[α])|, |λ∗∗i (Φ3[α])|) =
1
2

(
|λi(W3[α])|+

√
λi(W3[α])2 + 4αθ1

)
. These results

establish the expression for Ji[α, λi(W)] in the lemma.

The previous lemma provided a characterization of
Ji[α, λi(W)]. The following lemma establishes that we can
simplify the optimization and focus solely on J2[α, λ2(W)].

Lemma 2. Under the assumptions of Theorem 1,
Ji[α, λi(W)] ≤ J2[α, λ2(W)] and α∗i [λi(W)] ≤
α∗2[λ2(W)] for i = 1 and i = 3, 4, . . . , N over the range
α ∈ [0,−θ−1

1 ].

We omit the proof of this lemma due to space limi-
tations (see [15] for details). The remainder of the proof
of Theorem 1 proceeds as follows. From Lemmas 1
and 2, the optimization problem (10) simplifies to: α? =
arg min

α≥0
J2[α, λ2(W)]. We shall now show that α∗2 is a

global minimizer of this function. Consider the derivative of
J2[α, λ2(W)] w.r.t. α on [0, α∗2):

∂

∂α
J2[α, λ2(W)] =

2θ1 + (θ2 + (θ3 − 1)λ2(W)) (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))√
4αθ1 + (λ2(W) + α (θ2 + (θ3 − 1)λ2(W)))2

+ (θ2 + (θ3 − 1)λ2(W)) sgn [λ2(W) + α (θ2 + (θ3 − 1)λ2(W))] .

Denote the first term in this sum by ϕ1(λ2(W), α)
and the second by ϕ2(λ2(W), α). It can be shown that
|ϕ1(λ2(W), α)| ≥ |ϕ2(λ2(W), α)| for any λ2(W) ∈
[−1, 1] and α ∈ [0, α∗2) by directly solving the inequality.
We conclude that the sign of the derivative on α ∈ [0, α∗2)
is completely determined by the sign of ϕ1(λ2(W), α) for
λ2(W) ∈ [−1, 1]. On α ∈ [0, α∗2), the sign of ϕ1(λ2(W), α)
is determined by the sign of its numerator. The transition
point for the numerator’s sign occurs at:

α+ = −2θ1 + λ2(W)(θ2 + (θ3 − 1)λ2(W))
(θ2 + (θ3 − 1)λ2(W))2

,

and by showing that α+ ≥ −θ−1
1 , we can establish that

this transition point is at or beyond α∗2. This indicates
that ϕ1(λ2(W), α) ≤ 0 if α ∈ [0, α∗2). We observe that
J2[α, λ2(W)] is nonincreasing on α ∈ [0, α∗2) and nonde-
creasing on α ∈ [α∗2,−θ−1

1 ) (as established in Lemma 1).
We conclude that α∗2 is a global minimum of the function
J2[α, λ2(W)], thereby proving Theorem 1 and establishing
J2[α?, λ2(W)] = |λ∗2(Φ3[α?])| =

√
−α?θ1.

Note that the last argument also implies that
J2[α, λ2(W)] ≤ λ2(W) on α ∈ [0, α∗2] and
J2[α, λ2(W)] < 1 on α ∈ (α∗2,−θ−1

1 ) since J2[α, λ2(W)]
is non-increasing on the former interval, it is non-decreasing
on the latter interval and J2[−θ−1

1 , λ2(W)] = 1. This

fact demonstrates that the matrix Φ3[α] is convergent if
α ∈ [0,−θ−1

1 ) in the sense that we have ρ(Φ3[α]− J) < 1.

C. Proof of Theorem 2: Convergence Rate

Proof: According to the discussion in Sections III-A
and IV-B , we have

ρ(Φ3[α?]− J) = |λ∗2(Φ3[α?])| = (α?|θ1|)1/2

= |θ1|1/2
[
−((θ3 − 1)λ2

2 + θ2λ2 + 2θ1)
(θ2 + (θ3 − 1)λ2)2

− −2
√
θ21 + θ1λ2 (θ2 + (θ3 − 1)λ2)

(θ2 + (θ3 − 1)λ2)2

]1/2

.

In order to prove the claim, we consider two cases: λ2(W) =
1−Ψ(N), and λ2(W) < 1−Ψ(N).

First, we suppose that λ2(W) = 1−Ψ(N) and show that
ρ(Φ3[α?]− J)2 − (1−

√
Ψ(N))2 ≤ 0. Denoting Ψ(N) = δ

and substituting λ2(W) = 1 − δ and θ1 = 1 − θ2 − θ3, we
obtain

ρ(Φ3[α?]− J)2 − (1−
√

Ψ(N))2 = −
(√

δ − 1
)2 A

B
.

Where the numerator is

A = (θ3 − 1) (δ2 − δ) + 2
√
δ (θ3 + θ2 − 1)

− 2
√
δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)



and the denominator

B = [(2− δ)δ + 1](1− θ3)− (1 + δ)θ2
− 2
√
δ (θ3 + θ2 − 1) ((θ3 − 1)(2− δ) + θ2).

It is clear from the assumptions that the expressions under
square roots are non-negative. Furthermore, the denominator
is negative since 1− θ3 < 0, θ2 > 0 and δ ∈ (0, 1). Finally,
note that (θ3 − 1) (δ2 − δ) ≤ 0 and 2

√
δ (θ3 + θ2 − 1) ≥ 0.

Thus, to see that the numerator is non-positive, observe that

[
√
δ (θ3 + θ2 − 1)]2

−
[√

δ (θ2 + (2− δ) (θ3 − 1)) (θ3 + θ2 − 1)
]2

= (δ − 1)δ(θ3 − 1)(θ3 + θ2 − 1) ≤ 0.

Thus, we have ρ(Φ3[α?]−J)2−(1−
√

Ψ(N))2 ≤ 0, implying
that ρ(Φ3[α?]− J) ≤ 1−

√
Ψ(N) if λ2(W) = 1−Ψ(N).

Now suppose λ2(W) < 1 − Ψ(N). We have seen
in Lemma 2 that α∗i [λi(W)] is an increasing function
of λi(W), implying α∗2[λ2(W)] ≤ α∗2[1 − Ψ(N)]. Since
ρ(Φ3[α?] − J) = (α?|θ1|)1/2 = (α∗2[λ2(W)]|θ1|)1/2 is an
increasing function of α∗2[λ2(W)], the claim of theorem
follows.

V. CONCLUDING REMARKS

This paper provides theoretical performance guarantees
for accelerated distributed averaging algorithms using node
memory. We consider acceleration based on local linear
prediction and focus on the setting where each node uses two
memory taps. We derived the optimal value of the mixing
parameter for the accelerated averaging algorithm, which
can be utilized to initialize the proposed algorithm using a
fully-decentralized scheme for estimating the spectral radius.
An important contribution of this paper is the derivation
of upper bounds on the spectral radius of the accelerated
consensus matrix. This bound relates the spectral radius
growth rate of the original matrix with that of the accelerated
consensus matrix. We believe that this result applies to the
general class of distributed averaging algorithms using node
state prediction, and shows that, even in its simplified form
and even at the theoretical level, accelerated consensus may
provide considerable improvement in convergence rate. Our
current work involves investigating similar theoretical gains
in asynchronous averaging algorithms (gossip), and finding
ways to extend this analysis to the more general setting where
more than one additional memory tap is used at each node.
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