
Multivariate Online Anomaly Detection Using
Kernel Recursive Least Squares

Tarem Ahmed and Mark Coates
Department of Electrical and Computer Engineering

McGill University
Montreal, QC, Canada

Email: tarem.ahmed@mail.mcgill.ca, coates@ece.mcgill.ca

Anukool Lakhina
Department of Computer Science

Boston University
Boston, MA, United States
Email: anukool@cs.bu.edu

Abstract— High-speed backbones are regularly affected by
various kinds of network anomalies, ranging from malicious
attacks to harmless large data transfers. Different types of
anomalies affect the network in different ways, and it is dif-
ficult to know a priori how a potential anomaly will exhibit
itself in traffic statistics. In this paper we describe an online,
sequential, anomaly detection algorithm, that is suitablefor use
with multivariate data. The proposed algorithm is based on the
kernel version of the recursive least squares algorithm. Itassumes
no model for network traffic or anomalies, and constructs and
adapts a dictionary of features that approximately spans the
subspace of normal behaviour. The algorithm raises an alarm
immediately upon encountering a deviation from the norm.
Through comparison with existing block-based offline methods
based upon Principal Component Analysis, we demonstrate that
our online algorithm is equally effective but has much faster
time-to-detection and lower computational complexity. Wealso
explore minimum volume set approaches in identifying the region
of normality.

I. I NTRODUCTION

Network traffic is often seen to exhibit sudden deviations
from normal behaviour. Some of these aberrations are caused
by malicious network attacks such as Denial-Of-Service or
viruses, whereas others are the result of equipment failures
and accidental outages [1]. Network operators need to be
able to diagnose anomalous behaviour in a timely manner,
in order to facilitate a fast response and take precautions for
the future. Most prior work in network anomaly detection
has used block-based methods, which are only suitable for
offline applications, requiring waits of up to hours before
alerts occur [1]–[4]. We suggest an alternative approach and
propose an online, recursive algorithm that detects anomalies
in multivariate network-wide data within minutes.

Anomalies have historically been seen to span a wide range
of types and classes, and each class may indicate its presence
on raw statistics in a different manner [1], [2]. Developing
widely-applicable definitions or models of normal network
behaviour and anomalies is thus difficult. Our algorithm takes
the alternative approach of learning the behaviour of normal
traffic, and autonomously adapting to shifts in the structure of
normality itself. We consider the absence of any parametric
model to be a crucial feature. The disadvantage of a model is
that it imposes limitations on the applicability of an algorithm,
and even subtle changes in the nature of network traffic

can render the model inappropriate. The choice of traffic
measurement and the feature space has a strong impact on
the performance of our algorithm, and determines what type
of anomalies can be detected. However, we consider that this
identification process is much more robust than the model
specification task.

In this paper we develop a sequential, real-time anomaly
detection algorithm that incrementally constructs and main-
tains a dictionary of input vectors which defines the region of
normal behaviour. The dictionary adapts over time to address
changes in the structure of normal traffic, with new elements
being added obsolete members deleted as the normality region
expands or migrates. We provide a comparative study on real
data of our proposed Kernel-based Online Anomaly Detection
(KOAD) algorithm and the block-based PCA detection algo-
rithm described in [2]. The results indicate that the detection
performance of the two are approximately equivalent, with the
KOAD algorithm offering lower computational complexity and
faster time-to-detection.

A. Related Work

Our work builds most closely on the series of works by
Lakhina et al. in [1], [2], [5]. They demonstrate the intrinsic
low-dimensionality of network flows, and the high spatial and
temporal covariance structure between the flows [5]. Lakhina
et al. used the technique of Principal Component Analysis
(PCA) to separate the space occupied by a set of traffic
metrics into two disjoint subspaces, corresponding to normal
and anomalous behaviour, respectively [1], [2]. They signal
an anomaly when the magnitude of the projection onto the
residual, anomalous subspace exceeds an associated PCA Q-
statistic threshold [6]. The PCA subspace method was shown
to be more effective than EWMA and Fourier approaches in
automatic diagnosis of anomalies [2].

Lakhina et al. also suggested an online formulation of the
PCA-based algorithm in [5]. This involved using a sliding
window implementation to identify the normal and anomalous
subspaces based on a previous block of time. The variation in
the structure of multivariate network traffic statistics over time
is, however, non-negligible. Further, the PCA-based detection
algorithm is extremely sensitive to the proper determination of
the associated Q-statistic threshold. We implemented the pro-

posed online version of PCA and observed that although the
anomalous and normal subspaces remained relevant over time,
using stale measurements to calculate the Q-statistic threshold
resulted in an unacceptable number of false positives. This
indicates that straightforward extensions to the PCA-based
method are not robust and motivates alternative approaches
for an online application.

Much of the other previous work on online network anomaly
detection has been based on network traffic models [3], [7].
Brutlag uses as an extension of the Holt-Winters forecasting
algorithm, which supports incremental model updating via
exponential smoothing [3]. His algorithm defines a “violation”
as an observation that falls outside an interval (a confidence
band), and identifies a “failure” (an anomaly) when the num-
ber of violations within an observation window exceeds a
threshold. Hajji uses a Gaussian mixture model, and develops
an algorithm based on a stochastic approximation of the
Expectation-Maximization (EM) algorithm to obtain estimates
of the model parameters [7].

A rare example of a real-time network anomaly detection
method that is not based on ana priori model, is the time-
based inductive learning machine (TIM) of Teng et al. [8].
Their machine constructs a set of rules based upon usage
patterns. The detection algorithm detects a deviation when
the premise of a rule occurs but the conclusion does not
follow. Applying machine learning approaches to network
anomaly detection is a recent phenomena. Examples include
the use of statistical learning techniques to detect email worms
and viruses by Martin et al. [9], and an algorithm based on
Kernel PCA proposed by Heafield [10]. The learning algorithm
presented in [8] is computationally intensive and the paper
has subsequently had more influence in the field of intrusion
detection [11], [12].

B. Outline of Paper

This paper is organized as follows. Section II reviews the
concepts of kernel machines and minimum volume sets. Sec-
tion III presents the KOAD algorithm, analyses computational
complexity, and discusses the choice of the algorithm param-
eters. Section IV compares the performance of our algorithm
with the block-based PCA approach, on data recorded on the
Abilene backbone network. Section V provides concluding
remarks and describes avenues for future research.

II. BACKGROUND

A. Kernel Recursive Least Squares

Kernel machines use a kernel mapping function to produce
non-linear and non-parametric learning algorithms [13]. The
idea is that a suitable kernel function, when applied to a
pair of input data vectors, may be interpreted as an inner
product in a high-dimensional Hilbert space known as the
feature space [14]. This allows inner products in the feature
space (inner products of thefeature vectors) to be computed
without explicit knowledge of the feature vectors themselves,
by simply evaluating the kernel function:

k(xi,xj) = 〈φ(xi), φ(xj)〉 (1)

where xi,xj denote the input vectors andφ represents the
mapping onto the feature space.

Popular kernel functions include the Gaussian kernel with
varianceσ2: k(x1,x2) = exp{− ‖x1−x2‖

2

2σ2 }, and the polyno-
mial kernel of degreep: k(x1,x2) = (a〈x1,x2〉+ b)p [13]. A
special case of the polynomial kernel is the linear kernel:

k(x1,x2) = 〈x1,x2〉. (2)

The Kernel Recursive Least Squares (KRLS) algorithm
combines the principles of kernel machines and the popular
Recursive Least Squares (RLS) algorithm [15], and provides
an efficient and non-parametric approach for performing online
data mining. The KRLS algorithm operates on a data sequence
of the form Zt = {xi, yi}

t
i=1, where the input-output pairs

(xi, yi) are assumed to be independent, identically distributed
samples from some distributionp(Y, X). The objective is to
obtain the best predictor̂yt of yt, givenZt−1

⋃

{xt}.
In conventional Recursive Least Squares, the dimension of

the space spanned by the input samples{xi}
t
i=1 is constrained

by the dimension of the input space. In contrast, Kernel
Recursive Least Squares involves a mapping onto a feature
space of much higher dimensionality than the input space,
and the dimension of the space spanned by{φ(xi)}

t
i=1 has

the potential to increase without bound. At each timestep,
the dimension will increase unlessxt satisfies φ(xt) =
t−1
∑

i=1

ai · φ(xi). If the dimension increases, then the new vector

is providing new information and adding to the predictive
power, and so should be included in the predictor. This leads
to the dilemma that the predictor may require the storage
of a large number of input vectors, leading to unreasonable
memory and computational requirements.

In defining KRLS, Engel et al. address this problem by
imposing a minimum threshold on the amount of new infor-
mation an input vector must provide in order to be added to
the predictor [14]. Feature vectorφ(xt) is said to beapproxi-
matelylinearly dependent on{φ(xi)}

t−1
i=1 , with approximation

thresholdν, if the projection errorδt satisfies the following
criterion:

δt = min
a

∥

∥

∥

∥

∥

t−1
∑

i=1

ai · φ(xi) − φ(xt)

∥

∥

∥

∥

∥

2

< ν. (3)

KRLS uses (3) to obtain adictionary of input vectorsD =
{x̃j}

m
j=1, where m < t, such thatφ(x̃) = {φ(x̃j)}

m
j=1,

approximately spans the feature space. The best predictorŷ
of y in the feature space of the sparse set,φ(x̃), can then be
evaluated:

ŷ =
m
∑

j=1

αj · 〈φ(x̃j), φ(xt)〉 =
m
∑

j=1

αj · k(x̃j ,xt) (4)

The weights{αj}
m
j=1 are learned by KRLS over time through

successive minimization of prediction errors in the least-
squares sense.

B. Minimum Volume Sets

We expect theregion of normalityto correspond to a high-
density region of the space. That is, it should contain the vast
majority of the encountered measurement vectors. It is thus
natural to compare the outcome of our anomaly detection
algorithm to other approaches for determining high-density
regions. One common approach is the estimation of minimum
volume sets (MVSs). Given data drawn from some underlying
probability distribution, the MVS estimation problem is tofind
the minimum volume subsetS of the input space, such that
the probability that a test point drawn from the distribution
lies outsideS equals a pre-specified valueµ [13]. These sets
are known in the MVS literature as density contour clusters.

Muñoz and Moguerza propose the One-Class Neighbour
Machine (OCNM) algorithm for estimating minimum volume
sets [16]. The OCNM algorithm is a block-based procedure
that provides a binary decision function indicating whether
xt is a member of the MVS or not. The algorithm requires
the choice of asparsity measure, which relaxes the density
estimation problem by replacing the task of estimating the
density function at each data point by a simpler measure
that asymptotically preserves the order induced by the density
function. We have implemented the OCNM algorithm for com-
parative purposes using then-th nearest neighbour distance as
the sparsity measure.

III. T HE KERNEL-BASED ONLINE ANOMALY DETECTION

(KOAD) A LGORITHM

Traffic flows in backbone networks have low intrinsic
dimensionality, and demonstrate strong spatial and temporal
covariance [5]. Consider a set of multivariate “normal” traffic
measurements{xt}

T
t=1. In an appropriately chosen feature

spaceF , with an associated kernel functionk(xi,xj), the
features corresponding to the normal traffic measurements
shouldcluster. That is, given the inherent low dimensionality
of network traffic, it should be possible to describe the
region occupied by the traffic features using a relatively small
dictionary of linearly independent elements{φ(x̃j)}. We can
construct an approximately equivalent description by learning
a dictionary of elements from the arriving input measurements
{xt}, and the size of the dictionary (m) will be much less than
T , leading to computational and storage savings.

The set of measurements contains not only “normal” traffic,
but also anomalous measurement vectors. We therefore require
a procedure for identifying when a measurement vector is
anomalous and excluding it from the dictionary. This proce-
dure is based on the intuition that an anomaly should be distant
in the feature space from the cluster of normal traffic. Once a
suitable dictionary has been trained to capture normal traffic,
the projection errorδt from (3) offers a very natural way of
assessing this distance.

A. The Algorithm

Algorithm 1 provides a high-level overview of the KOAD
algorithm; a more complete description is presented in the
Appendix. The KOAD algorithm operates at each timestept

Algorithm 1 : Outline of Kernel-based Online Anomaly
Detection (KOAD) algorithm

Set thresholds:ν1, ν2 ;1

for t = 1, 2, . . . do2

Data: (xt, yt)
/* Evaluate current measurement */
Compute projection errorδt for xt usingDt ;3

if δt > ν2 then4

Raise Red1 Alarm ;5

endif6

if δt > ν1 then7

Raise Orange Alarm ;8

Storext in Θ ;9

endif10

/* Process previous orange alarm */
if Orange Alarm(xt−ℓ) then11

Re-evaluate projection errorδ for xt−ℓ usingDt12

if δ > ν1 then
Evaluate usefulness ofxt−ℓ over previousℓ13

measurements ;
if NOT usefulthen14

Raise Red2 Alarm(xt−ℓ) ;15

else16

Add xt−ℓ to dictionaryD ;17

Lower Orange Alarm(xt−ℓ) ;18

endif19

else20

Lower Orange Alarm(xt−ℓ) ;21

endif22

RemoveΘ{1} ;23

endif24

/* Remove obsolete elements */
Evaluate usefulness of each dictionary element over25

previousL measurements;
Remove any useless element from dictionaryD;26

endfor27

on a traffic measurement vectorxt. In accordance with the
standard KRLS algorithm [14], we also define a scalaryt

associated with the measurement vectorxt. Although KOAD
does not useyt in its present version, we intend to explore
its utility in discovering additional anomalies in our future
work. An example choice forxt is theflow vector(the number
of packets in each source-destination flow, normalized to the
unit hypersphere), and foryt the total number of packets
in the network, as recorded during the measurement interval
corresponding to timestept.

The algorithm begins by evaluating the errorδt in projecting
the arriving xt onto the current dictionary (in the feature
domain). This error measureδt is then compared with two
thresholdsν1 and ν2, whereν1 < ν2. If δt < ν1, we infer
thatxt is sufficiently linearly dependent on the dictionary, and
represents normal traffic. Ifδt > ν2, we conclude thatxt is far
away from the realm of normal behaviour, and immediately

raise a “Red1” alarm to signal an anomaly.
If δt > ν1, we infer thatxt is sufficiently linearly indepen-

dent from the dictionary to be considered an unusual event. It
may indeed be an anomaly, or it may represent an expansion
or migration of the space of normality. We raise “Orange”
alarm, store the relevant input vector in data structureΘ to
keep track of its contribution over the nextℓ timesteps, and
then resolve the orange alarm.

At timestept + ℓ, we re-evaluate the errorδ in projecting
xt onto dictionaryDt+ℓ. Note that the dictionary may have
changed between timestepst and t + ℓ, and the value ofδ at
this re-evaluation may consequently be different from theδt

at timestept. If the value ofδ after the re-evaluation is found
to be less thanν1, we lower the orange alarm and keep the
dictionary unchanged.

If the value ofδ is found instead to be greater thanν1 after
the re-evaluation at timestept + ℓ, we perform a secondary
“usefulness” test to resolve the orange alarm. The usefulness
of xt is assessed by observing the kernel values ofxt with
xi, i = t + 1, . . . , t + ℓ. If a kernel value is high (greater
than a thresholdd), then φ(xt) is deemed close toφ(xi).
If a significant number of the kernel values are high, then
xt cannot be considered anomalous; normal traffic has just
migrated into a new portion of the feature space andxt should
be entered into the dictionary. Contrarily if almost all kernel
values are small, thenxt is a reasonably isolated event, and
should be heralded as an anomaly. We evaluate:

[

t+ℓ
∑

i=t+1

I(k(xt,xi) > d)

]

> ǫℓ, (5)

whereI is the indicator function andǫ ∈ (0, 1) is a selected
constant. If (5) evaluates true, then we lower the relevant
orange alarm to green (no anomaly) and addxt to the
dictionary. If (5) evaluates false, we elevate the relevantorange
alarm to a “Red2” alarm. Once an orange alarm is resolved,
we remove the stored input vector fromΘ.

Removal of elements from the dictionary occurs when a
dictionary element is declared obsolete. This event occursafter
a test similar to (5) above. We periodically perform the same
check, but replaceℓ by L, a much larger number. In addition,
we replaceǫ by 0 and turn the inequality into an equality
comparison. It is important to keepℓ relatively small, because
it determines the time lag before an orange alarm is resolved.
On the other hand, we do not wish to declare an element
obsolete if a short time period occurs where no traffic lies in
its vicinity. ThereforeL should be relatively large, allowing
for short periods of uselessness to be ignored. The KOAD
algorithm also incorporates exponential forgetting, so that the
impact of past observations is gradually reduced.

B. Complexity Analysis

Storage and complexity issues are paramount to online
applications. In terms of storage requirements, the maximum
dimensions of the variables that we have to store arem×m,
wherem represents the size of the dictionary. We also store

the input vectors that raise orange alarms forℓ timesteps, and
an additional binaryL × m matrix. Our experiments have
shown that high sparsity levels are achieved in practice, and
the dictionary size does not grow indefinitely.

The computational bottlenecks in the KOAD algorithm are
the matrix multiplications. When no element is dropped, there
is a constant number of multiplications of anm × m matrix
with anm×1 column vector. In the rare case that an element
is removed from the dictionary, the algorithm must perform
a multiplication of twom × m matrices. The complexity of
the algorithm is thusO(m2) for every standard timestep and
O(m3) for timesteps when element removal occurs.

The complexity using PCA over a block of data of length
t is O(tR2), whereR is the number of principal components
[2]. The key point to note here is that the complexity of PCA
is a function of time, whereas the KOAD complexity is not.

C. Parameter Selection

The KOAD algorithm requires the setting of a number
of constant parameters. When the algorithm commences, the
dictionary has not been formed so there is no definition of
normality. For this reason, every vector should be considered
for addition to the dictionary, i.e., there should be no Red1
alarms. During this initial training period (we use300 training
samples in the experiments), the value ofν2 is set to1.

During normal operation, the parameter that has the most
direct effect on the detection performance is the thresholdν1.
Thresholdν2 determines the instant flagging of an anomaly
(the Red1 alarms). Wheneverδt > ν1, the algorithm signals
an orange alarm which it processesℓ timesteps later.

Our experiments have shown that optimal settings forν1 and
ν2 vary for different traffic metrics (such as number of packets,
number of bytes, number of flows, or entropies of destination
IP addresses). However, for the same metric, the performance
of a setting remains approximately the same across widely-
separated time periods. In Section IV, we analyze the perfor-
mance variation obtained by different choices. Currently,we
do not offer an automatic approach for setting the thresholds
— this is an area of future research. Instead, we recommend
the procedure of running the algorithm over a training set
of data with known anomalies and then setting the values to
achieve an acceptable compromise between detection and false
alarm rates.

Experiments indicate that the algorithm performance is not
particularly sensitive to the choice ofℓ, d, ǫ or L. The choice
of ℓ governs a compromise between the lag-time to anomaly
declaration and the false alarm rate. From a practical pointof
view, as statistics are often exported by network monitoring
devices every five minutes, a value ofℓ = 20 evaluates
to under two hours. The20 input vectors usually provide
more than enough data to assess the usefulness of a potential
dictionary element, and the time-to-detection is still faster
than using block-based methods. Indeed, our experiments
have shown that for almost allbona fide anomalies that
were initially identified as orange alarms, the kernel value
drops immediately, similar to the example of Fig. 2(c). The

parameterL exerts a similar influence toℓ, but determines
when obsolete vectors are removed from the dictionary. In this
case, there is not such a pressing motive to keepL small, since
it is not critical to remove obsolete elements immediately.We
useL = 100 in the results presented, but any value in the range
40 − 200 resulted in similar performance in our experiments.

The choice ofd determines how close the dictionary element
must be to an input vector before it is considered useful, and
therefore defines a region of usefulness in the feature space.
The appropriate value is dependent on the kernel being used
(the kernel implicitly defines a distance measure), and should
lie below the long-term average kernel value of any genuine
dictionary element. The choice can be made based on an
inspection of kernel values (as depicted in Fig. 2). The value
of ǫ determines what fraction of input vectors must lie within
the defined region of usefulness.

IV. EXPERIMENTS

A. Data

To evaluate our algorithm, we examined performance on
network-wide traffic datasets analyzed by Lakhina et al. in [2].
This data was collected from11 core routers in the Abilene
backbone network for a week (Dec. 15 to Dec. 21, 2003). It
comprises two multivariate timeseries, one being the number
of packets and the other the number of individual IP flows
in each of the Abilene backbone flows (the traffic entering at
one core router and exiting at another), binned at five minute
intervals. Both datasets,X(1) andX(2), are of dimensionF ×
T , whereT = 2016 is the number of timesteps andF = 121
is the number of backbone flows.

We manually identified the anomalies present in our
datasets. Thus we have “ground truth” anomaly annotations
against which to compare the output of our KOAD detection
algorithm. We were able to manually identify34 anomalies
in the packet-counts timeseries and44 anomalies in the IP
flow-counts timeseries.

B. Results

In our experiments, we setxt to be theflow vector at
timestep t normalized to the unit hypersphere, and as the
associatedyt the total amount of traffic in the network:

xt =
X(1 : F, t)

‖X(1 : F, t)‖
, yt =

F
∑

f=1

X(f, t).

Here i = 1, 2 indicates whether the number of packets or IP
flows is being measured. This choice exploits clustering due
to spatial correlations in network traffic [5].

We ran our KOAD algorithm for various combinations of
the thresholdsν1 and ν2. For the results presented in this
paper, the default settings for the dropping parameters were
d = 0.9 and L = 100, the tolerance for resolving orange
alarms wereℓ = 20 and ǫ = 0.20, and pertain to the no-
forgetting (γ = 1) case. We used a linear kernel, as defined
in (2). We implemented the OCNM algorithm using then-th
nearest neighbour distance as the sparsity measure withn set
to 50 andµ = 0.98 to select the 98% minimum volume set.

10
−2

10
−1

δ t (a)

10
9

10
11

M
ag

ni
tu

de
 o

f r
es

id
ua

l

(b)

10
−1

10
0

E
uc

lid
ea

n
 d

is
ta

nc
e

(c)

500 750 1000 1250 1500 1750 2000

KRLS

PCA

OCNM

Timestep

(d)

Fig. 1. (a) KOAD projection errorδt, with dotted line indicatingν1 and
dashed line indicatingν2; (b) magnitude of PCA projection onto residual
subspace, with dashed line indicating associated Q-statistic threshold; (c)
OCNM using n-th nearest-neighbour distance, with dashed line indicating
anomaly distance threshold; and (d) positions at which anomalies are detected
by (⋄) KOAD, (o) PCA, and (�) OCNM, all as functions of time. Dataset:
Abilene packet-counts timeseries.

For the dataset comprising the Abilene packet-counts time-
series, Figs. 1(a) and 1(b) show the variations inδt obtained
using KOAD with ν1 = 0.03 and ν2 = 0.07, and the
magnitude of the energy in the residual components from PCA
using R = 4 principal components, respectively. For PCA-
based anomaly detection, we use the Q-statistic threshold [6]
as in [2]. Fig. 1(c) shows the distance measures obtained using
the OCNM algorithm, together with the threshold indicating
the 98% minimum volume set. The spike positions in Figs.
1(a-c) indicate the anomalies signalled by KOAD, PCA and
OCNM. Fig. 1(d) compares the positions of the detected
anomalies, indicating that, for the most part, the three methods
signal the same events.

Using these settings, OCNM flags26 of the34 anomalies in
the packet timeseries. The anomalous input vectors thus also
exhibit high Euclideann-th neighbour distances in the input
space. Recall that KOAD deals with distance in the feature
space. One noticeable difference in the results of the three
different algorithms occurs aroundt = 1400. Here OCNM
detects a series of anomalies, PCA indicates nothing abnormal,
and the KOADδt is initially high for a block of time and then
suddenly dips. This is indicative of the subtle differencesin the
three approaches. The block of25 input vectors forms a small
cluster. This cluster is sufficiently numerous and energetic for
PCA to dedicate a principal component to it, so PCA does
not consider it an anomaly. KOAD signals the first vector in
the cluster as an orange alarm, tracks it forℓ = 20 subsequent
timesteps during whichδt remains high, then because there are
sufficient similar vectors immediately thereafter the usefulness
test is passed and the orange alarm is rendered green. The
remaining5 vectors in the25-vector cluster are very similar
to this first vector, which results in the sudden dip inδt. In
contrast, then-th nearest-neighbour distance for every vector
in the cluster is large (n is larger than25). It is interesting to
note that if we reducen to 25 from 50, OCNM declares none

0.8

0.9

1

K
er

ne
l

 v
al

ue

0.8

0.9

1

K
er

ne
l

 v
al

ue

1000 1250 1500 1750 2000

0.8

0.9

1

Timestep

K
er

ne
l

 v
al

ue

Fig. 2. Behaviour over time ofk(x̃j ,xt), when x̃j is (top) a normalD
member, (middle) aD member that eventually becomes obsolete, and (bottom)
an anomalousD member. Dashed line in each figure indicates usefulness
thresholdd. Dataset: Abilene packet-counts timeseries.

of these timesteps as anomalous.
Fig. 2 depicts the changing behaviour over time of the

kernel valuesk(x̃j ,xt) for three different types of dictionary
members̃xj . Fig. 2(a) shows a consistently useful dictionary
element. Many input vectors are close to this element, resulting
in high kernel values. Sudden drops below the threshold
d correspond primarily to anomalies. Fig. 2(b) shows the
behaviour of a dictionary element that gradually becomes
obsolete. This figure motivates the need to eventually discard
such dictionary members. Fig. 2(c) illustrates the case of
a Red2 alarm. The kernel values drop significantly below
the thresholdimmediatelyafter this input vector arrives and
produces aδt > ν1. The algorithm signals an orange alarm in
this case, tracks it forℓ timesteps, upon which it performs the
usefulness test and elevates the orange alarm to a Red2 alarm.
This input vector is never entered into the dictionary.

C. Detection Performance

Our objective is to detect the34 anomalies in the packet-
counts timeseries, and the44 anomalies in the flow-counts
timeseries. Fig. 3 presents the trade-off between the probability
of detection (PD) and the probability of false alarms (PFA)
as Receiver Operating Characteristics (ROC) curves for the
packet-counts timeseries. Curves are presented for various
settings ofν2, and each point corresponds to a choice ofν1.
Fig. 3 shows that the detection rate does not monotonically
increase asν1 decreases. This is becauseν1 does not solely

TABLE I

DETECTION OF THE34 ANOMALIES IN THE ABILENE PACKET-COUNTS

DATASET WITH KOAD USING VARIOUS REPRESENTATIVE SETTINGS OFν1

AND ν2 , COMPARED WITH PCA AND OCNM.

ν1 setting ν2 setting Detected Missed False

ν1 = 0.01 ν2 = 0.05 22 12 0

ν1 = 0.02 ν2 = 0.05 26 8 19

ν1 = 0.02 ν2 = 0.07 21 13 0

ν1 = 0.05 ν2 = 0.07 30 4 17

ν1 = 0.04 ν2 = 0.09 26 8 1

PCA with R = 4 25 9 0

OCNM with n = 50 26 8 14

0 0.005 0.01 0.015 0.02 0.025 0.03
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

P
FA

P
D

ν
2
=0.05

ν
2
=0.07

ν
2
=0.09

Fig. 3. Receiver Operating Characteristics (ROC) curves showing the trade-
off between the probability of detection (PD) and the probability of false
alarms (PF A). Dataset: Abilene packet-counts timeseries.

act as a detection threshold, but also determines, in a non-
linear fashion, the size and nature of the dictionary and hence
the identified region of normality. Theν2 setting determines
the (instant) declaration (correctly or falsely) of Red1 alarms.

Table I provides a breakdown of detection performance
for the packet-counts dataset and Table II presents the same
information for the flow-counts dataset. We see that KOAD
provides comparable detection rates, with the added advantage
of lower lag and complexity.

D. Anomaly Analysis

We now examine two types of anomalies in more detail to
highlight the differences between the block-based approach of
PCA and the sequential, learning approach of KOAD. In our
first example, we consider a240-timesteps (20-hour) period
during which approximately20 backbone flows experience
step-changes in behaviour and the nature of the network traffic
changes fundamentally. This is most evident in the flow-counts
dataset. The top panel of Fig. 4(a) depicts, as an example,
the variation in the number of IP flows over time in the
Seattle-Chicago backbone flow. When the first input vector
corresponding to this shift arrives, KOAD signals a Red1 alarm
(as δt > ν2), and keeps tracking it forℓ timesteps, during
which all input vectors produce significantly highδt values
and are all signalled as Red1 alarms (Fig. 4(a), bottom panel).
Once the first input vector corresponding to this shift is entered
into the dictionary, it explains all subsequent input vectors that
belong to this temporary shift, andδt becomes low. The spikes

TABLE II

DETECTION OF THE44 ANOMALIES IN THE ABILENE FLOW-COUNTS

DATASET WITH KOAD USING VARIOUS REPRESENTATIVE SETTINGS OFν1

AND ν2 , COMPARED WITH PCA AND OCNM.

ν1 setting ν2 setting Detected Missed False

ν1 = 0.03 ν2 = 0.07 37 7 21

ν1 = 0.01 ν2 = 0.08 28 16 5

ν1 = 0.04 ν2 = 0.08 39 5 29

ν1 = 0.04 ν2 = 0.09 38 6 25

PCA with R = 4 22 22 0

OCNM with n = 50 37 7 3

0

0.5

1

1.5

2

2.5
x 10

4

N
um

be
r

of
 IP

 fl
ow

s

850 900 950 1000 1050 1100 1150 1200

0.1

0.3

0.5

δ

Timestep

(a) Top panel: Variation in number of IP flows in Abilene
Seattle-Chicago backbone flow over time. Bottom panel: Vari-
ation in the KOADδt during same period forν1 = 0.03 and
ν2 = 0.07 (dashed line).

10
4

10
5

10
6

N
um

be
r

of
 IP

 fl
ow

s

800 1000 1200 1400 1600 1800
10

0

10
5

10
10

M
ag

ni
tu

de
 o

f
 p

ro
je

ct
io

n

Timestep

(b) Top panel: Variation in number of IP flows in Abilene
New York-Chicago backbone flow over time. Bottom panel:
Projection ofxt onto the second principal component over the
same interval.

Fig. 4. Example anomalies in the Abilene flow-counts dataset. (a) The
structure of normal traffic shifts dramatically for approximately240 timesteps.
KOAD flags the firstℓ = 20 arrivals as Red1 alarms. (b) Three anomalies on
the New York-Chicago backbone flow that are not detected by PCA.

at t = 1100 and1160 represent different, definite anomalies.
PCA dedicates one principal component to this block of time
and does not indicate any anomalous behaviour.

In our second example, we examine the New York-Chicago
backbone flow. Here there are three instances at aroundt =
710, 1434 and1615 persisting for3−5 timesteps each, where
the number of IP flows increases dramatically (Fig. 4(b), top
panel). The PCA-based algorithm clusters these anomalies
together and dedicates a principal component to describing
them (Fig. 4(b), bottom panel). The anomalies consequently
go undetected. The KOAD algorithm in contrast adapts over
time and detects all three anomalies.

V. D ISCUSSION ANDFUTURE WORK

We have described a kernel-based online anomaly detection
algorithm that is able to detect anomalous events in real-
time. Through analysis of datasets recorded on the Abilene
network, we have demonstrated that the proposed algorithm
achieves similar detection performance to the most effective
block-based approaches, but has a faster time-to-detection and
lower computational complexity. Anomalies are either flagged

within the same timestep of its occurrence, or after the orange
alarm is resolved a short interval later. In both cases, the time-
to-detection is faster than with block-based methods.

The nature of our results raises interesting questions about
what should be reported as an anomaly. For example, the
25-vector input cluster aroundt = 1400 (Section IV-B) can
be viewed as a large time-scale anomaly, in that the traffic
here is very different from anything seen during the rest
of the week. On the other hand, it persists for two hours,
rendering debatable its labelling as anomalous. In the flow-
counts dataset, we observe a20-hour period during which
traffic is fundamentally different from the rest of the week.The
algorithm presented in this paper flags the firstℓ measurements
as red alarms, then incorporates this shift into its designation
of the space of normality.

The experimental results presented in this paper pertain only
to volume anomalies, which are evident in packet-counts and
flow-counts timeseries. The KOAD algorithm is also able to
detect anomalies in distributions (such as arising from DoS
attacks) which are evident in timeseries of header entropies [1],
and in a variety of other applications such as camera networks.

We do not currently present an automatic procedure for
setting the thresholdsν1 andν2. Our experiments indicate that
optimal settings for them vary for different traffic metrics, as
evident from Tables I and II, but remain similar over time for
the same metric. Both supervised and unsupervised learning
approaches can be adopted to train the parameters. In the
supervised setting, the algorithm can be run repeatedly over
a set of training data with adjustments to the thresholds until
the detection rate is maximized for a specified maximum false
alarm rate. In the unsupervised setting, a minimum volume set
approach may be incorporated to provide pseudo-labels for the
data. Our future research involves makingν1 andν2 adaptive,
and designing supplementary algorithms for autonomously
setting the other KOAD algorithm parameters.

It is interesting to consider how combinations of the three
approaches might perform. For example, PCA analysis could
be performed on an initial block of training data and the most
significant components used as the initial KOAD dictionary
members. Alternatively, the OCNM algorithm could be applied
to provide an initial definition of the region occupied by
normal traffic. Further study is required to develop a better
understanding of the relationships between minimum volume
sets and the KOAD dictionary and thresholds.

APPENDIX: ALGORITHMIC DETAILS

Here we present a more detailed description of the KOAD
algorithm. Matlab code implementing the algorithm, our
datasets and instructions on replicating our experiments,are
available at [17]. Algorithm 2 presents pseudocode.

Notation and Definitions: We use subscripts with variables
enclosed in square brackets to denote a subset of the rows and
columns of a matrix. Thus[Λ]2:5,1:5 refers to the second to fifth
rows, and first to fifth columns, of matrixΛ. K̃t represents
the mt × mt kernel matrix for the elements{(x̃j)}

mt

j=1 that
are in the dictionary at timet. Thus the matrix entry[K̃t]i,j

Algorithm 2 : Kernel-based Online Anomaly Detection

Set thresholds:ν1, ν2 ;1

Chooseγ, d, L, l, ǫ ;2

Initialize: t = 1, D = {x1}, m1 = 1, K̃1 = [k11],3

K̃−1
1 = [1

k11

], α̃1 = y1

k11

, P1 = [1], Λ = [1] ;
for t = 2, 3, . . . do4

Data: (xt, yt)
/* Evaluate current measurement */
Computek̃t−1(xt) using (6) ;5

Setat = K̃−1
t−1 · k̃t−1(xt) ;6

Calculate projection errorδt = ktt − k̃t−1(xt)
T · at ;7

UpdateΛ using (7) ;8

if δt > ν2 then9

Raise Red1 Alarm ;10

endif11

if δt > ν1 then12

Raise Orange Alarm ;13

SetΘ = Θ
⋃

xt and appendΛ with (0 1)
T ;14

endif15

Computeqt, Pt and α̃t using (8)-(10) ;16

/* Process previous orange alarm */
if Orange Alarm(xt−ℓ) then17

Re-evaluate projection errorδ for xt−ℓ usingDt ;18

if δt > ν1 then19

if sum([Λ]L−ℓ+1:L , mt−1+1) > ǫℓ then20

SetD = D
⋃

Θ{1} and ãt = at;21

ComputeK̃t, K̃−1
t using (11), (12)22

Setat = (0 1)
T ;23

ComputePt and α̃t using (13) and (15) ;24

mt = mt−1 + 1 ;25

Lower Orange Alarm(xt−ℓ) to Green ;26

else27

Elevate Orange Alarm(xt−ℓ) to Red2 ;28

endif29

else30

Lower Orange(xt−ℓ) to Green ;31

endif32

RemoveΘ{1} ;33

endif34

/* Remove obsolete elements */
for j = 1, . . . , mt do35

if sum([Λ]1:L , j) = 0 then36

DropElement(j) ;37

endif38

endfor39

endfor40

ProcedureDropElement(p)

Move pth rows & columns ofK̃t, K̃−1
t to ends ;1

Setδp = 1/[K̃−1
t]mt,mt

and ãp = −δp[K̃
−1
t]1:mt−1,mt

;2

CalculateK̃−1
t and α̃t using (16) and (17) ;3

SetK̃t = [K̃t]1:mt−1,1:mt−1, mt = mt−1 − 1 and4

P = 10000 · Im ;
Removepth element fromD andpth column fromΛt ;5

is k(x̃i, x̃j). K̃−1
t is the inverse ofK̃t and ktt = k(xt,xt).

Pt is known as the covariance matrix in RLS literature and
equals[ATA]−1 whereAt is the full t × mt matrix of least
squares coefficientsa = (a1, a2, . . . , amt

). StructureΘ stores
the input vectors corresponding to unresolved orange alarms.
At any timet, Θ will containG input vectors, whereG denotes
the number of orange alarms that occurred between timesteps
t − ℓ and t − 1.

Lines 1-2: The fixed parameters of the algorithm were
discussed in Section III with the exception ofγ, the forgetting
factor. Our KOAD algorithm gradually disregards old data
through exponential forgetting, which puts time-dependent
weights on old observations.

Line 3: At timestep 1, the first input vector is added to the
dictionary, and all variables are initialized.

Lines 5-7: Upon receiving each input vector, the projection
errorδt is evaluated. The first step in this process is the calcu-
lation of the kernel values for the current input measurement:

[k̃t−1(xt)]j = k (xt,D{j}) for j = 1, . . . , mt−1 (6)

This allows computation of the sparsification vectorat and
subsequentlyδt.

Line 8: The binary matrixΛ is concatenated from two
submatrices of sizesL × mt−1 and L × G. The columns
of Λ indicate whether the kernel values ofx̃j with xt for
the j = 1, . . . , mt−1 members of the dictionary, and those of
Θ{g} with xt for theg = 1, . . . , G unresolved orange alarms,
exceededd for the previousL timesteps.

Aside from the additional effects of changes to the dic-
tionary and the number of unresolved orange alarms, theΛ
matrix is updated each timestep as follows:

Λ =

(

[Λ]2:end,1:end

k̃t−1(xt)
T > d, k(Θ{g},xt) > d

)

for t > L,
(

[Λ]

k̃t−1(xt)
T > d, k(Θ{g},xt) > d

)

otherwise.

(7)
Lines 9-15: These lines address the signalling of alarms. If

δt > ν2, we instantly declare a Red1 alarm. Ifδt > ν1 then
we raise an orange alarm, storext in Θ, and appendΛ with
(0 1)T.

Line 16: The covariance matrixP is updated using:

Pt =
1

γ

(

Pt−1 − qta
T
t Pt−1

)

(8)

whereqt is known as the Kalman gain in the RLS literature:

qt =
Pt−1at

γ + aT
t Pt−1at

. (9)

The least-squares vector̃α is also updated:

α̃t = α̃t−1 + K̃−1
t−1qt

(

yt − k̃t−1(xt)
T · α̃t−1

)

. (10)

Lines 17-34: These lines address the resolution of orange
alarms observedℓ timesteps ago. First, we re-evaluate the error
δ in projectingΘ{1} = xt−ℓ on to the dictionary at timet.

If the re-evaluated value ofδ is found to be greater thanν1,
we perform a secondary “usefulness” test to resolve the orange
alarm. We evaluate the “usefulness” ofxt−ℓ by summing the
entries in the(mt−1 + 1)-th column ofΛ for the previousℓ
timesteps and comparing withǫℓ. Notice that the(mt−1 +1)-
th column of Lambda is always associated withΘ{1} = xt−ℓ,
which is always the orange alarm that is to be resolved.

If the re-evaluated value ofδ exceedsν1 and the usefulness
test fails, we elevate the orange alarm to Red2. If the re-
evaluated value ofδ is belowν1, we lower the orange alarm.
In both cases, the dictionary is unchanged.

Now if the re-evaluated value ofδ exceedsν1 and the
usefulness test passes, we must lower the orange alarm and
also add Θ{1} to the dictionary. Adding an element to the
dictionary involves the following steps. First, the optimum ãt

is now at. The kernel matrix and its inverse are updated as:

K̃t =

(

K̃t−1 k̃t−1(xt)

k̃t−1(xt)
T ktt

)

(11)

K̃−1
t =

1

δt

(

δtK̃t−1 + ãtã
T
t −ãt

−ãT
t 1

)

. (12)

Oncext is added toDt−1, xt becomes perfectly representable
by the elements inDt−1, soat = (0 1). The update equation
for the covariance matrixPt is:

Pt =
1

γ

(

Pt−1 0

0T γ

)

. (13)

The least squares weights̃αt are:

α̃t = K̃−1
t PtA

T
t Yt (14)

whereYt denotes the full history ofyt for timestepsi = 1 : t.
The recursive update equation forα̃t in terms ofα̃t−1 is then:

α̃t =

γ− 1

2 α̃t−1 −
1
δt

ãt

(

yt − γ− 1

2 · k̃t−1(xt)
T · α̃t−1

)

1
δt

(

yt − γ− 1

2 · k̃t−1(xt)
T · α̃t−1

)

 .

(15)
Lines 35-39: These lines evaluate whether any dictionary

element has become obsolete. The test is similar to the
usefulness test, except it is performed overL timesteps, and
the criterion for declaring a dictionary element obsolete is
made stricter. An element is discarded from the dictionary
if the relevant column ofΛ contains all zeroes, indicating that
the particular element has been consistently useless.

Procedure DropElement(p): This procedure removes the
p-th element from the dictionary. The first step is to re-organize
the rows and columns of̃K andK̃−1, such that kernel values
of every other element with thep-th element is associated with
the last row and column of̃K andK̃−1. We then evaluateδp

and ãp, and use them to updatẽK−1
t according to:

K̃−1
t = [K̃−1

t]1:mt−1,1:mt−1 −
ãpã

T
p

δp

. (16)

The update equation for̃αt is:

α̃t = α̃t −
1

δp

(

ãpã
T
p −ãp

−ãT
p 1

)

K̃tα̃t. (17)

The new optimum weight vector̃αt must explain the estimate
ŷ using one less component. Equation (17) ensures that the
value of the last coefficient in the updated̃αt is 0. The last
component of the updated̃αt may then be truncated, along
with the last row and column of̃K−1

t . We now delete the
pth element fromD and decrementm. Recalculation of the
covariance matrixP requires full access to the historical data;
instead we choose to resetP to a large constant times the
appropriately-sized identity matrix every time an elementis
dropped. Our experiments have shown that a value of10, 000
for the constant allowsP sufficient variation in subsequent
timesteps, and the predictive component of the algorithm (as
given by (4)) stabilizes within a few timesteps.

ACKNOWLEDGEMENTS

This research was supported by the Natural Sciences and Engi-
neering Research Council (NSERC) and industrial and government
partners, through the Agile All-Photonic Networks (AAPN) project.

REFERENCES

[1] A. Lakhina, M. Crovella, and C. Diot, “Mining Anomalies Using Traffic
Feature Distributions,” inProc. SIGCOMM, Philadelphia, PA, Aug.
2005.

[2] ——, “Diagnosing Network-Wide Traffic Anomalies,” inProc. SIG-
COMM, Portland, OR, Aug. 2004.

[3] J. Brutlag, “Aberrant Behavior Detection in Time Seriesfor Network
Monitoring,” in Proc. USENIX System Admin. Conf. (LISA), New
Orleans, LA, Dec. 2000.

[4] P. Barford, J. Kline, D. Plonka, and A. Ron, “A Signal Analysis of
Network Traffic Anomalies,” inProc. Internet Measurement Workshop,
Marseille, France, Nov. 2002.

[5] A. Lakhina, K. Papagiannaki, M. Crovella, C. Diot, E. Kolaczyk, and
N. Taft, “Structural Analysis of Network Traffic Flows,” inProc. ACM
SIGMETRICS, New York, NY, Jun. 2004.

[6] J. Jackson and G. Mudholkar, “Control Procedures for Residuals As-
sociated With Principal Component Analysis,”Technometrics, vol. 21,
no. 3, pp. 341–349, Aug. 1979.

[7] H. Hajji, “Statistical Analysis of Network Traffic for Adaptive Faults
Detection,” IEEE Trans. Neural Networks, vol. 16, no. 5, pp. 1053–
1063, Sep. 2005.

[8] H. Teng, K. Chen, and S. Lu, “Adaptive Real-time Anomaly Detection
Using Inductively Generated Sequential Patterns,” inProc. IEEE Comp.
Soc. Symp. Research in Security and Privacy, Oakland, CA, May 1990.

[9] S. Martin, A. Sewani, B. Nelson, K. Chen, and A. Joseph, “A
Two-Layer Approach for Novel Email Worm Detection,” University
of California, Berkeley, Berkeley, CA, 2005. [Online]. Available:
http://www.cs.berkeley.edu/∼anil/papers/SRUTIsubmitted.pdf

[10] K. Heafield, “Detecting Network Anomalies With Kernel Principal
Component Analysis,” Pasadena, CA, May 2006, research report.
[Online]. Available: http://kheafield.com/professional/netlab/final.pdf

[11] T. Lane, “Machine Learning Techniques For The ComputerSecurity
Domain of Anomaly Detection,” Ph.D. dissertation, Purdue University,
W. Lafayette, IN, Aug. 2000.

[12] K. Ilgun, R. Kemmerer, and P. Porras, “State TransitionAnalysis: A
Rule-Based Intrusion Detection Approach,”IEEE Trans. Software Eng.,
vol. 21, no. 3, pp. 181–199, Mar. 1995.

[13] B. Schölkopf and A. Smola,Learning with Kernels. Cambridge, MA:
MIT Press, Dec. 2001.

[14] Y. Engel, S. Mannor, and R. Meir, “The Kernel Recursive Least Squares
Algorithm,” IEEE Trans. Signal Proc., vol. 52, no. 8, pp. 2275–2285,
Aug. 2004.

[15] T. Cormen, C. Leiserson, R. Rivest, and C. Stein,Introduction to
Algorithms, 2nd ed. Cambridge, MA: MIT Press, Sep. 2001.

[16] A. Muñoz and J. Moguerza, “Estimation of High-DensityRegions
Using One-Class Neighbor Machines,”IEEE Trans. Pattern Analysis
and Machine Intelligence, vol. 28, no. 3, pp. 476–480, Mar. 2006.

[17] T. Ahmed and M. Coates. Online Sequential Diagnosis of Network
Anomalies. Project Description. [Online]. Available: http://www.tsp.
ece.mcgill.ca/Networks/projects/projdesc-anom-tarem.html

