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Abstract— High-speed backbones are regularly affected by can render the model inappropriate. The choice of traffic
various kinds of network anomalies, ranging. from malicious measurement and the feature space has a strong impact on
attacks to harmless large data transfers. Different types ©  he performance of our algorithm, and determines what type
anomalies affect the network in different ways, and it is dif . . )
ficult to know a priori how a potential anomaly will exhibit _Of an_o_ma!les can be d_etected. However, we consider that this
itself in traffic statistics. In this paper we describe an onine, identification process is much more robust than the model
sequential, anomaly detection algorithm, that is suitablefor use specification task.
with multivgriate data. The. proposed algorithm IS based on he In this paper we deve|0p a SequentiaL real-time anoma|y
kernel version of the recursive least squares algorithm. lessumes  yataction algorithm that incrementally constructs andrmai
no model for network traffic or anomalies, and constructs and . .. . . . .
adapts a dictionary of features that approximately spans tle tains a dlct|on.ary of mqu vgctors which defmes_ the regibn o
subspace of normal behaviour. The algorithm raises an alarm normal behaviour. The dictionary adapts over time to addres
immediately upon encountering a deviation from the norm. changes in the structure of normal traffic, with new elements
Through comparison with existing block-based offline methds peing added obsolete members deleted as the normalitynregio
based upon Principal Component Analysis, we demonstrate 8t oy ,an4s or migrates. We provide a comparative study on real
our online algorithm is equally effective but has much faste data of d K I-based Online A lv Detecti
time-to-detection and lower computational complexity. Wealso ala o our proposed rernel-based Uniineé Anomaly Uetection
explore minimum volume set approaches in identifying the rgion  (KOAD) algorithm and the block-based PCA detection algo-
of normality. rithm described in [2]. The results indicate that the débect
performance of the two are approximately equivalent, with t
KOAD algorithm offering lower computational complexity@n

Network traffic is often seen to exhibit sudden deviationfaster time-to-detection.
from normal behaviour. Some of these aberrations are caused
by malicious network attacks such as Denial-Of-Service §r Related Work
viruses, whereas others are the result of equipment failure Our work builds most closely on the series of works by
and accidental outages [1]. Network operators need to bakhina et al. in [1], [2], [5]. They demonstrate the intims
able to diagnose anomalous behaviour in a timely mannkw-dimensionality of network flows, and the high spatiatian
in order to facilitate a fast response and take precautions femporal covariance structure between the flows [5]. Lakhin
the future. Most prior work in network anomaly detectioret al. used the technique of Principal Component Analysis
has used block-based methods, which are only suitable {(®XCA) to separate the space occupied by a set of traffic
offline applications, requiring waits of up to hours beforenetrics into two disjoint subspaces, corresponding to @abrm
alerts occur [1]-[4]. We suggest an alternative approach aand anomalous behaviour, respectively [1], [2]. They digna
propose an online, recursive algorithm that detects anemalan anomaly when the magnitude of the projection onto the
in multivariate network-wide data within minutes. residual, anomalous subspace exceeds an associated PCA Q-

Anomalies have historically been seen to span a wide rangjatistic threshold [6]. The PCA subspace method was shown
of types and classes, and each class may indicate its peeséade more effective than EWMA and Fourier approaches in
on raw statistics in a different manner [1], [2]. Developingqutomatic diagnosis of anomalies [2].
widely-applicable definitions or models of normal network Lakhina et al. also suggested an online formulation of the
behaviour and anomalies is thus difficult. Our algorithmetak PCA-based algorithm in [5]. This involved using a sliding
the alternative approach of learning the behaviour of nbrmaindow implementation to identify the normal and anomalous
traffic, and autonomously adapting to shifts in the struetfr subspaces based on a previous block of time. The variation in
normality itself. We consider the absence of any paramettite structure of multivariate network traffic statisticeotime
model to be a crucial feature. The disadvantage of a modeiss however, non-negligible. Further, the PCA-based dietec
that it imposes limitations on the applicability of an aligom, algorithm is extremely sensitive to the proper determoratf
and even subtle changes in the nature of network traffite associated Q-statistic threshold. We implemented tthe p

I. INTRODUCTION



posed online version of PCA and observed that although tivhere x;, x; denote the input vectors angl represents the
anomalous and normal subspaces remained relevant over timapping onto the feature space.
using stale measurements to calculate the Q-statististtbt@  Popular kernel functions include the Gaussian kernel with
resulted in an unacceptable number of false positives. TRigriances2: k(x1,X2) = exp{_%}, and the polyno-
indicates that straightforward extensions to the PCA-thasgial kernel of degree: E(x1,%2) = (a(x1,x2) +b)? [13]. A
method are not robust and motivates alternative approackggcial case of the polynomial kernel is the linear kernel:
for an online application.
Much of the other previous work on online network anomaly k(x1,%2) = (x1,X2). (2)
detection has been based on network traffic models [3], [7].
Brutlag uses as an extension of the Holt-Winters forecgstin The Kernel Recursive Least Squares (KRLS) algorithm
algorithm, which supports incremental model updating vieombines the principles of kernel machines and the popular
exponential smoothing [3]. His algorithm defines a “viadati Recursive Least Squares (RLS) algorithm [15], and provides
as an observation that falls outside an interval (a confideran efficient and non-parametric approach for performingenl
band), and identifies a “failure” (an anomaly) when the nuntlata mining. The KRLS algorithm operates on a data sequence
ber of violations within an observation window exceeds af the form Z; = {x;,v;}!_;, where the input-output pairs
threshold. Hajji uses a Gaussian mixture model, and deseld;, ;) are assumed to be independent, identically distributed
an algorithm based on a stochastic approximation of tlsamples from some distributionY, X). The objective is to
Expectation-Maximization (EM) algorithm to obtain estit®® obtain the best predictal of y:, given Z;_1 |J {x:}.
of the model parameters [7]. In conventional Recursive Least Squares, the dimension of
A rare example of a real-time network anomaly detectiahe space spanned by the input samglest_, is constrained
method that is not based on anpriori model, is the time- by the dimension of the input space. In contrast, Kernel
based inductive learning machine (TIM) of Teng et al. [8Recursive Least Squares involves a mapping onto a feature
Their machine constructs a set of rules based upon usagéce of much higher dimensionality than the input space,
patterns. The detection algorithm detects a deviation whend the dimension of the space spanned{byx;)}!_, has
the premise of a rule occurs but the conclusion does n@e potential to increase without bound. At each timestep,

follow. Applying machine learning approaches to networthe dimension will increase unless; satisfies d(xy) =
anomaly detection is a recent phenomena. Examples incl

the use of statistical learning techniques to detect enmiing .~

and viruses by Martin et al. [9], and an algorithm based aa providing new information and adding to the predictive
Kernel PCA proposed by Heafield [10]. The learning algorithppower, and so should be included in the predictor. This leads
presented in [8] is computationally intensive and the paptr the dilemma that the predictor may require the storage
has subsequently had more influence in the field of intrusiof a large number of input vectors, leading to unreasonable
detection [11], [12]. memory and computational requirements.

In defining KRLS, Engel et al. address this problem by

. . . . . imposing a minimum threshold on the amount of new infor-
This paper is organized as follows. Section Il reviews th@a4ion an input vector must provide in order to be added to

concepts of kernel machines and minimum volume sets. Segs predictor [14]. Feature vectarx, ) is said to beapproxi-

tion Il presents the KOAD algorithm, analyses CompUtaﬂonmaterlinearIy dependent ofié(x;) f;} with approximation

complexny,_ and discusses the choice of the algorithm Paraffresholdy, if the projection errorj; satisfies the following
eters. Section IV compares the performance of our algorithtferion:

with the block-based PCA approach, on data recorded on the

a; - #(x;). If the dimension increases, then the new vector

B. Outline of Paper
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Abilene backbone network. Section V provides concluding t—1

remarks and describes avenues for future research. 0y = main Z a; - d(xi) — o(x4)]| <w. 3)
Il. BACKGROUND =t

A. Kernel Recursive Least Squares KRLS uses (3) to obtain dictionary of input vectorsD =

Kernel machines use a kernel mapping function to produz{.)e{j};n:l’ wherem < t, such thatg(X) = {6(%;)}Ls,
non-linear and non-parametric learning algorithms [13jeT apprpmmately spans the feature space. The best predjctor
idea is that a suitable kernel function, when applied to %I y In the. feature space of the sparse ¢k, can then be
pair of input data vectors, may be interpreted as an inn%¥aluated.

product in a high-dimensional Hilbert space known as the m m

feature space [14]. This allows inner products in the faatur 0= D ;- (6(%;),6(x¢)) = > _ ;- k(X %)  (4)
space (inner products of tHeature vectorsto be computed j=1 J=1

without explicit knowledge of the feature vectors themss|v

by simply evaluating the kernel function: The weights{a;}7 ; are learned by KRLS over time through

successive minimization of prediction errors in the least-
k(xi, %) = ($(x:), D(x;) (1) squares sense.



B. Minimum Volume Sets

Algorithm 1: Outline of Kernel-based Online Anomaly

We expect theegion of normalityto correspond to a high- Detection (KOAD) algorithm

density region of the space. That is, it should contain the vay Set thresholdsy;, vs ;
majority of the encountered measurement vectors. It is thasfor t = 1,2,... do

natural to compare the outcome of our anomaly detection
algorithm to other approaches for determining high-dgnsit
regions. One common approach is the estimation of minimusn
volume sets (MVSs). Given data drawn from some underlying
probability distribution, the MVS estimation problem isfind 5
the minimum volume subse&f of the input space, such thate
the probability that a test point drawn from the distribuatio 7
lies outsideS equals a pre-specified valye[13]. These sets s
are known in the MVS literature as density contour clusters
Mufioz and Moguerza propose the One-Class Neighbaur
Machine (OCNM) algorithm for estimating minimum volume
sets [16]. The OCNM algorithm is a block-based procedure
that provides a binary decision function indicating whethe
x; is a member of the MVS or not. The algorithm requires
the choice of asparsity measurewhich relaxes the density13
estimation problem by replacing the task of estimating the
density function at each data point by a simpler measuse
that asymptotically preserves the order induced by theityenss
function. We have implemented the OCNM algorithm for coms
parative purposes using theth nearest neighbour distance ag
the sparsity measure. 18

IIl. THE KERNEL-BASED ONLINE ANOMALY DETECTION 00
(KOAD) ALGORITHM o1

Traffic flows in backbone networks have low intrinsie,
dimensionality, and demonstrate strong spatial and teahpog
covariance [5]. Consider a set of multivariate “normalffia 24
measurementgx,;}7_,. In an appropriately chosen feature
spaceF, with an associated kernel functidf(x;,x;), the 5
features corresponding to the normal traffic measurements
shouldcluster. That is, given the inherent low dimensionalitygg

Data: (x¢,y:)
/= Eval uate current neasurenment * [
Compute projection erraf; for x; usingD; ;
if 6; > 15 then
Raise Red1 Alarm ;
endif
if 6; > v1 then
Raise Orange Alarm ;
Storex; in © ;
endif
/+* Process previous orange alarm «/
if Orange Alarmg;_,) then
Re-evaluate projection errarfor x;_, using D,
if 0 > 14 then
Evaluate usefulness of;,_, over previous
measurements ;
if NOT usefulthen
Raise Red2 Alarm;_) ;
else
Add x;_, to dictionaryD ;
Lower Orange Alarmg; ) ;
endif
else
Lower Orange Alarmg;_ ) ;
endif
Remove©{1} ;
endif
/* Renpve obsol ete el enents * [

Evaluate usefulness of each dictionary element over

previousL measurements;
Remove any useless element from dictionary

of network traffic, it should be possible to describe the endfor

region occupied by the traffic features using a relativelglbm
dictionary of linearly independent elemer{$(x;)}. We can
construct an approximately equivalent description byraey

a dictionary of elements from the arriving input measuretmerPn @ traffic measurement vectag. In accordance with the
{x;}, and the size of the dictionaryn) will be much less than Standard KRLS algorithm [14], we also define a scajar
T, leading to computational and storage savings. associated with the measurement vectar Although KOAD

The set of measurements contains not only “normal” traffi0es not usey; in its present version, we intend to explore
but also anomalous measurement vectors. We thereforaeeqiif Utility in discovering additional anomalies in our fuéu
a procedure for identifying when a measurement vector Work. An example choice fax, is theflow vector(the number
anomalous and excluding it from the dictionary. This proc&f packets in each source-destination flow, normalized ¢o th
dure is based on the intuition that an anomaly should berdtist&nit hypersphere), and foy, the total number of packets
in the feature space from the cluster of normal traffic. Onceifa the network, as recorded during the measurement interval
suitable dictionary has been trained to capture normdidraf corresponding to timestep

the projection errop, from (3) offers a very natural way of The algorithm begins by evaluating the erpin projecting
assessing this distance. the arriving x; onto the current dictionary (in the feature

) domain). This error measurg is then compared with two
A. The Algorithm thresholdsy, and v,, wherev; < vy, If §; < vy, we infer
Algorithm 1 provides a high-level overview of the KOADthatx; is sufficiently linearly dependent on the dictionary, and
algorithm; a more complete description is presented in thepresents normal traffic. & > v, we conclude thak, is far
Appendix. The KOAD algorithm operates at each timestepaway from the realm of normal behaviour, and immediately



raise a “Red1” alarm to signal an anomaly. the input vectors that raise orange alarms#&omesteps, and
If §; > v1, we infer thatx, is sufficiently linearly indepen- an additional binaryL x m matrix. Our experiments have
dent from the dictionary to be considered an unusual eventshown that high sparsity levels are achieved in practicd, an
may indeed be an anomaly, or it may represent an expansiba dictionary size does not grow indefinitely.
or migration of the space of normality. We raise “Orange” The computational bottlenecks in the KOAD algorithm are
alarm, store the relevant input vector in data strucilréo the matrix multiplications. When no element is droppedrehe
keep track of its contribution over the ne&kttimesteps, and is a constant number of multiplications of am x m matrix
then resolve the orange alarm. with anm x 1 column vector. In the rare case that an element
At timestept + ¢, we re-evaluate the errdrin projecting is removed from the dictionary, the algorithm must perform
x; onto dictionaryD;,,. Note that the dictionary may havea multiplication of twom x m matrices. The complexity of
changed between timestepsndt + ¢, and the value of at the algorithm is thug)(m?) for every standard timestep and
this re-evaluation may consequently be different from dhe O(m?) for timesteps when element removal occurs.
at timestep. If the value ofé after the re-evaluation is found The complexity using PCA over a block of data of length
to be less than,, we lower the orange alarm and keep theéis O(tR?), whereR is the number of principal components
dictionary unchanged. [2]. The key point to note here is that the complexity of PCA
If the value of§ is found instead to be greater thanafter is a function of time, whereas the KOAD complexity is not.
the re-evaluation at timestep+ ¢, we perform a secondary .
“usefulness” test to resolve the orange alarm. The useielng' Parameter Selection
of x; is assessed by observing the kernel valuesofvith The KOAD algorithm requires the setting of a number
x;, 1 =t+1,...,t + £. If a kernel value is high (greaterof constant parameters. When the algorithm commences, the
than a thresholdi), then ¢(x;) is deemed close t@(x;). dictionary has not been formed so there is no definition of
If a significant numberof the kernel values are high, thennormality. For this reason, every vector should be considler
x; cannot be considered anomalous; normal traffic has jdet addition to the dictionary, i.e., there should be no Redl
migrated into a new portion of the feature space apdhould alarms. During this initial training period (we u880 training
be entered into the dictionary. Contrarily if almost all kekr samples in the experiments), the valuevgfis set tol.
values are small, ther, is a reasonably isolated event, and During normal operation, the parameter that has the most

should be heralded as an anomaly. We evaluate: direct effect on the detection performance is the threshold
" Thresholdyv, determines the instant flagging of an anomaly
Z I(k(xe,x:) > d) | > €, ) (the Redl alarms). Whenevéy > v4, the algorithm signals

an orange alarm which it processetmesteps later.

Our experiments have shown that optimal settings/faand
wherel is the indicator function and € (0,1) is a selected 1, vary for different traffic metrics (such as number of packets
constant. If (5) evaluates true, then we lower the relevagptimber of bytes, number of flows, or entropies of destination
orange alarm to green (no anomaly) and addto the [P addresses). However, for the same metric, the perforenanc
dictionary. If (5) evaluates false, we elevate the releesahge of a setting remains approximately the same across widely-
alarm to a “Red2” alarm. Once an orange alarm is resolvesbparated time periods. In Section 1V, we analyze the perfor
we remove the stored input vector frogh mance variation obtained by different choices. Currently,

Removal of elements from the dictionary occurs when do not offer an automatic approach for setting the threshold
dictionary element is declared obsolete. This event ocafiles — this is an area of future research. Instead, we recommend
a test similar to (5) above. We periodically perform the samBe procedure of running the algorithm over a training set
check, but replacé by L, a much larger number. In addition,of data with known anomalies and then setting the values to
we replacee by 0 and turn the inequality into an equalityachieve an acceptable compromise between detection aed fal
comparison. It is important to kedprelatively small, because alarm rates.
it determines the time lag before an orange alarm is resolvedExperiments indicate that the algorithm performance is not
On the other hand, we do not wish to declare an elemgsirticularly sensitive to the choice éf d, € or L. The choice
obsolete if a short time period occurs where no traffic lies isf ¢ governs a compromise between the lag-time to anomaly
its vicinity. ThereforeL should be relatively large, allowing declaration and the false alarm rate. From a practical pafint
for short periods of uselessness to be ignored. The KOARew, as statistics are often exported by network monitprin
algorithm also incorporates exponential forgetting, sat the devices every five minutes, a value 6f = 20 evaluates
impact of past observations is gradually reduced. to under two hours. Th&0 input vectors usually provide
more than enough data to assess the usefulness of a potential
dictionary element, and the time-to-detection is stilltdéas

Storage and complexity issues are paramount to onlittean using block-based methods. Indeed, our experiments
applications. In terms of storage requirements, the maximthave shown that for almost albona fide anomalies that
dimensions of the variables that we have to storerare m, were initially identified as orange alarms, the kernel value
wherem represents the size of the dictionary. We also stodeops immediately, similar to the example of Fig. 2(c). The

1=t+1

B. Complexity Analysis



parameterL exerts a similar influence té, but determines .
when obsolete vectors are removed from the dictionary.ig th = ** §------ Tt 1 POnaiui 1) et Met i ==l @
case, there is not such a pressing motive to keemall, since 10°
it is not critical to remove obsolete elements immediatéfg.
useL = 100 in the results presented, but any value in the rant.
40 — 200 resulted in similar performance in our experiments
The choice ofi determines how close the dictionary elemer
must be to an input vector before it is considered useful, a g
therefore defines a region of usefulness in the feature speg
The appropriate value is dependent on the kernel being us"

Magnitude
of residual

distance

(the kernel implicitly defines a distance measure), andlshot ¢ § o YN T e o 00

lie below the long-term average kernel value of any genuit .., } ° o oo o o o oo
dictionary element. The choice can be made based on . & oo oo o m s o mol
inspection of kernel values (as depicted in Fig. 2). The all 500 750 1000 1250 1500 1750 2000

of ¢ determines what fraction of input vectors must lie withir,. o Timestep o

he defined . N ful Fig. 1. (a) KOAD projection errob:, with dotted line indicatingr; and
the defined region of usetulness. dashed line indicating2; (b) magnitude of PCA projection onto residual

subspace, with dashed line indicating associated Q-statisreshold; (c)
IV. EXPERIMENTS OCNM using n-th nearest-neighbour distance, with dashed line indigati
A. Data anomaly distance threshold; and (d) positions at which afiemare detected
. . by (¢) KOAD, (0) PCA, and [J) OCNM, all as functions of time. Dataset:
To evaluate our algorithm, we examined performance @bilene packet-counts timeseries.

network-wide traffic datasets analyzed by Lakhina et al2jn [
This data was collected frorhl core routers in the Abilene For the dataset comprising the Abilene packet-counts time-
backbone network for a week (Dec. 15 to Dec. 21, 2003). $eries, Figs. 1(a) and 1(b) show the variationg,irobtained
comprises two multivariate timeseries, one being the numbgsing KOAD with »; = 0.03 and v, = 0.07, and the
of packets and the other the number of individual IP flowmagnitude of the energy in the residual components from PCA
in each of the Abilene backbone flows (the traffic entering &sing R = 4 principal components, respectively. For PCA-
one core router and exiting at another), binned at five minut@sed anomaly detection, we use the Q-statistic thresbpld [
intervals. Both datasetX(!) andX (2, are of dimensiord” x  as in [2]. Fig. 1(c) shows the distance measures obtained usi
T, whereT = 2016 is the number of timesteps add= 121 the OCNM algorithm, together with the threshold indicating
is the number of backbone flows. the 98% minimum volume set. The spike positions in Figs.
We manually identified the anomalies present in oui(a-c) indicate the anomalies signalled by KOAD, PCA and
datasets. Thus we have “ground truth” anomaly annotatio®NM. Fig. 1(d) compares the positions of the detected
against which to compare the output of our KOAD detectioanomalies, indicating that, for the most part, the threehods
algorithm. We were able to manually identifi4 anomalies signal the same events.
in the packet-counts timeseries and anomalies in the IP  Using these settings, OCNM flag§ of the 34 anomalies in
flow-counts timeseries. the packet timeseries. The anomalous input vectors thos als
B. Results exhibit high Euclideam-th neighbour distances in the input
space. Recall that KOAD deals with distance in the feature
space. One noticeable difference in the results of the three
fferent algorithms occurs around= 1400. Here OCNM
detects a series of anomalies, PCA indicates nothing alalprm
X(1: F,t) P and the KOADY; is initially high for a block of time and then
X=X RO YT S OX(£.1). suddenly dips. This is indicative of the subtle differenicethe
f=1 three approaches. The block & input vectors forms a small
Herei = 1,2 indicates whether the number of packets or IBluster. This cluster is sufficiently numerous and enecdeti
flows is being measured. This choice exploits clustering dRRCA to dedicate a principal component to it, so PCA does
to spatial correlations in network traffic [5]. not consider it an anomaly. KOAD signals the first vector in
We ran our KOAD algorithm for various combinations othe cluster as an orange alarm, tracks itfef 20 subsequent
the thresholds/; and v». For the results presented in thigimesteps during which, remains high, then because there are
paper, the default settings for the dropping parameterg waufficient similar vectors immediately thereafter the uedss
d = 0.9 and L = 100, the tolerance for resolving orangetest is passed and the orange alarm is rendered green. The
alarms werel/ = 20 and e = 0.20, and pertain to the no- remaining5 vectors in the25-vector cluster are very similar
forgetting ¢y = 1) case. We used a linear kernel, as defindgd this first vector, which results in the sudden dipdin In
in (2). We implemented the OCNM algorithm using thegh contrast, then-th nearest-neighbour distance for every vector
nearest neighbour distance as the sparsity measurewgdt in the cluster is larger( is larger tharRb). It is interesting to
to 50 and i = 0.98 to select the 98% minimum volume set. note that if we reduce to 25 from 50, OCNM declares none

In our experiments, we set; to be theflow vectorat
timestept normalized to the unit hypersphere, and as t
associated;; the total amount of traffic in the network:



0.95r-

Kernel

0.9r

0.85-

0.81

° |
s a® 0.75}
>

Kernel

0.7

0.659

1
T e s il ek Tl i T 0.6F ——V,=0.05| |
c 3 -e-v =0.07
T L 2 1
* o8 055 -6-1v,=0.09
L L L L 0.5 L L I . n
1000 1250 1500 1750 2000 0 0.005 0.01 0.015 0.02 0.025 0.03
Timestep FA

Fig. 2. Behaviour over time of;(X;,xt), whenX; is (top) a normalD  Fig. 3. Receiver Operating Characteristics (ROC) curvesviy the trade-
member, (middle) & member that eventually becomes obsolete, and (bottorojf between the probability of detectionPf) and the probability of false

an anomalousD member. Dashed line in each figure indicates usefulnesgarms Pr 4). Dataset: Abilene packet-counts timeseries.

thresholdd. Dataset: Abilene packet-counts timeseries. ) ) )

of these timesteps as anomalous. act as a detection threshold, but also determines, in a non-

Fig. 2 depicts the changing behaviour over time of thl- ear fashion, the size and nature of the dictionary anctben

kernel values:(%;,x,) for three different types of dictionary '€ |_dent|f|eddreg|]|on of normaht;I/. Th?2|5(a|tt|ngfdet§rmeldnes
membersz,. Fig. 2(a) shows a consistently useful dictionary '€ (instant) declaration (correctly or falsely) of Redarais.
element. Many input vectors are close to this element, tiegul . 12°/e | provides a breakdown of detection performance

in high kernel values. Sudden drops below the threshJﬂr the packet-counts dataset and Table Il presents the same
d correspond primarily to anomalies. Fig. 2(b) shows thigformation for the flow-counts dataset. We see that KOAD

behaviour of a dictionary element that gradually becom@50Vides comparable detection rates, with the added aaigant

obsolete. This figure motivates the need to eventually disc®! lOWer lag and complexity.
such dictionary members. Fig. 2(c) illustrates the case Bf
a Red2 alarm. The kernel values drop significantly below _ o _
the thresholdmmediatelyafter this input vector arrives and e now examine two types of anomalies in more detail to
produces &, > 4. The algorithm signals an orange alarm iftighlight the differences between the block-based apjproac

this case, tracks it fof timesteps, upon which it performs theP?CA and the sequential, learning approach of KOAD. In our
usefulness test and elevates the orange alarm to a Red2 aldfgf example, we consider 240-timesteps %0-hour) period

Anomaly Analysis

This input vector is never entered into the dictionary. during which approximatel\20 backbone flows experience
. step-changes in behaviour and the nature of the netwoffictraf
C. Detection Performance changes fundamentally. This is most evident in the flow-t®un

Our objective is to detect thg4 anomalies in the packet- dataset. The top panel of Fig. 4(a) depicts, as an example,
counts timeseries, and thel anomalies in the flow-countsthe variation in the number of IP flows over time in the
timeseries. Fig. 3 presents the trade-off between the pilitya Seattle-Chicago backbone flow. When the first input vector
of detection Pp) and the probability of false alarmsP£,4) corresponding to this shift arrives, KOAD signals a Redtrala
as Receiver Operating Characteristics (ROC) curves for tt@s é; > 12), and keeps tracking it fof timesteps, during
packet-counts timeseries. Curves are presented for @rigehich all input vectors produce significantly high values
settings ofv,, and each point corresponds to a choiceaf and are all signalled as Red1 alarms (Fig. 4(a), bottom panel
Fig. 3 shows that the detection rate does not monotonicafdnce the first input vector corresponding to this shift issesd
increase asg;, decreases. This is because does not solely into the dictionary, it explains all subsequent input vesthat
belong to this temporary shift, ardgd becomes low. The spikes

TABLE |
DETECTION OF THE34 ANOMALIES IN THE ABILENE PACKET-COUNTS TABLE I
DATASET WITH KOAD USING VARIOUS REPRESENTATIVE SETTINGS OFy DETECTION OF THE44 ANOMALIES IN THE ABILENE FLOW-COUNTS
AND v2, COMPARED WITHPCAAND OCNM. DATASET WITH KOAD USING VARIOUS REPRESENTATIVE SETTINGS OF;

v setting | v2 setting Detected | Missed | False AND v, COMPARED WITHPCAAND OCNM.
v1 =0.01 | v9 =0.05 22 12 0 v setting | w2 setting Detected | Missed | False
v1 =0.02 | v2 =0.05 26 8 19 vy =0.03 | vo =0.07 37 7 21
vy =0.02 | va =0.07 21 13 0 vy =0.01 | v2 =0.08 28 16 5
v1 =0.05 | v2 =0.07 30 4 17 v1 =0.04 | v2 =0.08 39 5 29
v1 =0.04 | vo =0.09 26 8 v1 =0.04 | v2 =0.09 38 6 25
PCA with R =4 25 9 0 PCA with R =14 22 22 0
OCNM with n = 50 26 8 14 OCNM with n = 50 37 7 3




25X : : : : : : within the same timestep of its occurrence, or after the ggan
alarm is resolved a short interval later. In both cases,ithe-t
to-detection is faster than with block-based methods.

The nature of our results raises interesting questionstabou
what should be reported as an anomaly. For example, the
25-vector input cluster around = 1400 (Section IV-B) can
be viewed as a large time-scale anomaly, in that the traffic
here is very different from anything seen during the rest
of the week. On the other hand, it persists for two hours,
rendering debatable its labelling as anomalous. In the flow-
(O3 N S et I I | 1 . . .

F + , counts dataset, we observe28-hour period during which
850 900 950 Tir}%‘)s?ep 1050 1100 1150 1200 traffic is fundamentally different from the rest of the we&ke
o - algorithm presented in this paper flags the firsteasurements
(a) Top panel: Variation in number of IP flows in Abilene . : ey - . .
Seattle-Chicago backbone flow over time. Bottom panel:-Vari as red alarms, then Incorporates this shift into its deﬂgna
ation in the KOADS; during same period for; = 0.03 and of the space of normality.
vz = 0.07 (dashed line). The experimental results presented in this paper pertayn on
to volume anomalies, which are evident in packet-counts and
flow-counts timeseries. The KOAD algorithm is also able to
detect anomalies in distributions (such as arising from DoS
attacks) which are evident in timeseries of header entsdfiie
and in a variety of other applications such as camera network

We do not currently present an automatic procedure for
setting the thresholds, andwv,. Our experiments indicate that
optimal settings for them vary for different traffic metries
evident from Tables | and Il, but remain similar over time for
the same metric. Both supervised and unsupervised learning
approaches can be adopted to train the parameters. In the

Number of

o
5

Number of

Magnitude of
projection

800 1000 1200 1400 1600 1800

Timestep supervised setting, the algorithm can be run repeatedly ove
(b) Top panel: Variation in number of IP flows in Abilene a set of training data with adjustments to the thresholdg unt
New York-Chicago backbone flow over time. Bottom panel: the detection rate is maximized for a specified maximum false
Projection ofx; onto the second principal component over the alarm rate. In the unsupervised setting, a minimum volurhe se

same interval. h be i ted t id do-labelféor t
Fig. 4. Example anomalies in the Abilene flow-counts data&et The approach may be incorporatec to provide pseudo-iabe '

structure of normal traffic shifts dramatically for appowitely 240 timesteps.  data. Our future research involves makingandv, adaptive,
KOAD flags the first! = 20 arrivals as Red1 alarms. (b) Three anomalies opand designing 5upp|ementary a|gorithm5 for autonomous|y
the New York-Chicago backbone flow that are not detected b&.PC setting the other KOAD algorithm parameters.

att+ = 1100 and 1160 represent different, definite anomalies. It is interesting to consider how combinations of the three
PCA dedicates one principal component to this block of timgpproaches might perform. For example, PCA analysis could
and does not indicate any anomalous behaviour. be performed on an initial block of training data and the most
In our second example, we examine the New York-Chicagignificant components used as the initial KOAD dictionary
backbone flow. Here there are three instances at arouad members. Alternatively, the OCNM algorithm could be apglie
710, 1434 and1615 persisting for3 — 5 timesteps each, whereto provide an initial definition of the region occupied by
the number of IP flows increases dramatically (Fig. 4(b), topormal traffic. Further study is required to develop a better
panel). The PCA-based algorithm clusters these anomaligglerstanding of the relationships between minimum volume
together and dedicates a principal component to describisgfs and the KOAD dictionary and thresholds.
them (Fig. 4(b), bottom panel). The anomalies consequently

go undetected. The KOAD algorithm in contrast adapts over APPENDIX ALGORITHMIC DETAILS

time and detects all three anomalies. Here we present a more detailed description of the KOAD
algorithm. Matlab code implementing the algorithm, our
V. DiscussiON ANDFUTURE WORK datasets and instructions on replicating our experimearts,

We have described a kernel-based online anomaly detect@fgilable at [17]. Algorithm 2 presents pseudocode.
algorithm that is able to detect anomalous events in real-Notation and DefinitionsWe use subscripts with variables
time. Through analysis of datasets recorded on the AbilefBclosed in square brackets to denote a subset of the rows and
network, we have demonstrated that the proposed algorité@lumns of a matrix. Thug\]s.5 1.5 refers to the second to fifth
achieves similar detection performance to the most effectirows, and first to fifth columns, of matrix. K; represents
block-based approaches, but has a faster time-to-deteaio the m; x m; kernel matrix for the element§(x;)}’; that
lower computational complexity. Anomalies are either flagjg are in the dictionary at timé. Thus the matrix entr;[f{t]i_j



Algorithm 2 Kernel-based Online Anomaly Detection  is k(X:, %;). K; ! is the inverse ofK; and k; = k(x:,x:).

1 Set thresholdsyy, vy ; P, is kno%/vn Ells the covariance matrix in RLS I_|terature and

2 Choosey, d, L, , ¢ : equals[A A]ﬁ_ _whereAt is the full ¢t x m; matrix of least

s Initialize: ¢ = 1, D = {x1}, m1 = 1, K1 = [ku1], squares coe icients = (al,ag_, ..., G, ). Structure® stores
=1 171 ~ _ ; - o the input vectors corresponding to unresolved orange alarm
K1 —[_],al—‘_,Pl—[l],A—[l ; . . . h
for ¢ — 2k131 d At any timet, © will contain G input vectors, wheré&! denotes

4 fort = KA 0 the number of orange alarms that occurred between timesteps

Data: (x, y:) t—¢andt—1

[+ Eval uate current measurement * Lines 1-2 The fixed parameters of the algorithm were

5 Computelft__ll (XE) using (6) ; discussed in Section Il with the exceptionpfthe forgetting

6 Seta; = Kt—ll'kf—l(xt) , - factor. Our KOAD algorithm gradually disregards old data
7 Calculate projection erraf; = ki —ki—1(x:)" "ar i through exponential forgetting, which puts time-deperden
8 UpdateA using (7) ; weights on old observations.

o if & > vy then Line 3: At timestep 1, the first input vector is added to the
10 Raise Redl Alarm ; dictionary, and all variables are initialized.

1 gnd|f Lines 5-7:. Upon receiving each input vector, the projection
12 if o > U then errord; is evaluated. The first step in this process is the calcu-
13 Raise Orange Alarm ; lation of the kernel values for the current input measuremen
14 SetO® = O Jx; and append\ with ( 0 1 s -

15 endif ki—1(xt)]; =k (x¢, D{j}) for j=1,....,m—1 (6)

16 Computeq,, P, anda; using (8)-(10) ;
/* Process previous orange alarm */
17 if Orange Alarmk;_,) then

This allows computation of the sparsification vectqrand
subsequently;.
Line 8: The binary matrixA is concatenated from two

18 _I?sg—evaluattﬁ projection errarfor x, ¢ USINGD: ;g pmatrices of sized, x m;_; and L x G. The columns
1o ! ?f>‘ 1 fn /th of A indicate whether the kernel values &f with x, for
20 : ﬂémt(g)]fféﬂig "1%1“3? et hen the j = 1,...,m:—1 members of the dictionary, and those of
21 etb=D ..{_1} anda; = ay, ©{g} with x, fortheg = 1,..., G unresolved orange alarms,
22 ComputeKt, KtT using (11), (12) exceeded! for the previousL timesteps.
23 Seta,=(01); Aside from the additional effects of changes to the dic-
24 ComputeP, and@, using (13) and (15) ;  tionary and the number of unresolved orange alarms,the
25 my=me—1+1; matrix is updated each timestep as follows:
26 Lower Orange Alarm{; ,) to Green ;
27 else [A]Q:end,l:end fort> L
28 Elevate Orange Alarnx_,) to Red?2 ; f(tfl(xt)T >d, k(0{g},x;) > d '
29 endif A= A
30 else ~ T otherwise.
31 Lower Orangeg;_,) to Green ; ki—1(x0)” > d, k(©1g}, %)) > d @)
32 endif
33 Remove©{1} : Lines 9-15 These lines address the signalling of alarms. If
34 endif ' 0; > 9, we instantly declare a Red1 alarm.dlf > v, then

/+ Renpve obsol ete el enents «/ we raise an orange alarm, staxe in ©, and append\ with
35 for j=1,...,m; do (0_1)T' . o .
36 if sum([A]1.z ;) = 0 then Line 16: The covariance matri¥ is updated using:
37 Dr opEl erent (j) ; 1
38 endif P, = ; (Ptfl - qtatTPtfl) (8)
39 endfor whereq; is known as the Kalman gain in the RLS literature:
40 endfor

_ Pi_ia )
Procedure Dr opEl enent ( p) a = v+ alP,_ia;
% rm—1 .
1 Move pth rows & columns ofK;, K; "~ to ends ; The least-squares vectéris also updated:
2 Setd, = 1/[K; omy.m, anda, = —8,[K; im,—1.m, _ _
3 CalculateK; * and @, using (16) and (17) ; & =1+ K aq (yt — k1 (x)" 54#1) . (20
SetK; = [K|1m,—1.1:m, -1, My = my_1 — 1 and . : .

) Pe: 1t000([) ) i]l' el =1 T = M1 an Lines 17-34 These lines address the resolution of orange

alarms observedtimesteps ago. First, we re-evaluate the error
d in projecting®{1} = x;_, on to the dictionary at time.

[&)]

Removepth element fromD and pth column fromA; ;




If the re-evaluated value dfis found to be greater than, The new optimum weight vecta@i; must explain the estimate
we perform a secondary “usefulness” test to resolve thegeran; using one less component. Equation (17) ensures that the
alarm. We evaluate the “usefulness” of , by summing the value of the last coefficient in the updatég is 0. The last
entries in the(m;_; + 1)-th column ofA for the previous/ component of the updated; may then be truncated, along
timesteps and comparing witlf. Notice that thgm;_1 +1)- with the last row and column Of(t_l. We now delete the
th column of Lambda is always associated withil} = x;_,, pth element fromD and decrementn. Recalculation of the
which is always the orange alarm that is to be resolved. covariance matri¥ requires full access to the historical data;

If the re-evaluated value @f exceeds/; and the usefulnessinstead we choose to reskt to a large constant times the
test fails, we elevate the orange alarm to Red2. If the rappropriately-sized identity matrix every time an elemint
evaluated value of is belowr;, we lower the orange alarm.dropped. Our experiments have shown that a valug)pfi00
In both cases, the dictionary is unchanged. for the constant allow® sufficient variation in subsequent

Now if the re-evaluated value of exceedsr; and the timesteps, and the predictive component of the algorithen (a
usefulness test passes, we must lower the orange alarm gién by (4)) stabilizes within a few timesteps.
also add ©{1} to the dictionary. Adding an element to the
dictionary involves the following steps. First, the optim, ACKNOWLEDGEMENTS
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